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subject of electromagnetic shielding and first suggested the
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. BACKGROUND

In the Fall of 1972, a project was begun at Harry Diamond
,aboratories to develop an analytical relationship between the
shielding effectiveness of a metallic enclosure as measured by
small loop and monopole antennas in accordance with MIL-STD-2851
ind the shielding effectiveness of the same enclosure when ex-
>osed to a plane wave Electromagnetic Pulse (EMP). The basic
>bjective of the project was to obtain some relatively simple,
2losed form approximations that could be useful in interpreting
data from measurements that were being planned as part of field
tests to determined the vulnerability of the Safeguard System to
damage from EMP fields. A longer range objective was to provide
an analytical basis for the development of small, low cost, mo-~
bile simulators that could be used to measure the shielding
effectiveness of various types of enclosures against EMP fields
generated by a wide range of natural and man-made sources includ-

ing lightning and high altitude nuclear explosions.

Using a heuristic approach that made liberal use of engineer-
ing approximations, the principal investigator obtained a single
expression relating the shielding effectiveness of an enclosure
against plane wave electromagnetic fields +to the shielding
effectiveness of the same enclosure against near fields generated
by small loop and monopole antennas. This expression was de-
scribed in Monroe? where it was cast in the form of a correc-
tion factor that can be used to adjust shielding effectiveness
measurements made with loop and monopole antennas located 12
inches from an enclosure to give the shielding effectiveness

1 Anonymous, MIL-STD-285 Method of Attenuation Measurements
for Enclosures, Electromagnetic Shielding, for Electronic
Test Purposes, Dept. of Defense, (25 June 1956).

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636, (July 1973).
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by these investigators combined elements from problems 1 and 3.
Moser®, Schulz'®, and Cowdell! used small loop antennas located
close to large, flat metal sheets;while Axford et al® used loop
and monopole antennas to illuminate a shielded enclosure that
has been penetrated by a narrow rectangular slot. On the theo-
retical side, Bannister?® gave an independent derivation of
Schelkunoff's equation Ior the case of a loop antenna oriented
with its plane parallel to the plane of the sheet. His deriva-
tion is based directly on Maxwell's equations and makes no use
of transmission theory. These results will be referred to as

the extended transmission theory of shielding.

In spite of its successes, Schelkunoff's equation has not
attained unanimous acceptance as a universal shielding formula.
For example, Bridges and Miller® point out several apparent
discrepancies between measurements and calculations based on
equation (2.16) and between (2.16) and comparable expressions
obtained by ostensibly more rigorous theories. These discrepan-
cies range from 50 to 100 dB in the frequency range from 100 Hz
to 10" Hz when (2.16) is applied to shielded enclosures in
the manner suggested by Cowdell and Babcock!®* . Moreover, the

predictions based on (2.16) fall on the optimistic side so that

5 J. R. Moser, IEEE Trans. EMC, EMC-9 (1967), 6.
6 P. R. Bannister, IEEE Trans. EMC. EMC-10 (1968), 2.
9 R. Axford, R. McCormack, and R. Mittra, Evaluation of the

Ay licatility of Standard CW EMI-RFI Shielding Effectiveness
Test Technigues of Assessment of EMP Hardness of Tactical
Sh+lters, Construction Engineering Research Laboratories,
CERL-TM-M-307, (March 1982).

14 R. B. Cowdell, Electronics, 40 (April 1967), 92.

15 .. F. Babcock, IEEE Trans. EMC, EMC-~-9 (Sept. 1967), 45.
16 R. B. Schulz, IEEE Trans. EMC, EMC-10 (March 1968), 95.
17 R. B. Cowdell, IEEE Trans. EMC, EMC-10 (March 1968), 158.

18 J. E. Bridges and D. A. Miller, IEEE Trans. EMC, EMC-10

(1968), 175.
25




this conviction when he used (2.16) to predict the shielding
effectiveness of various electronics cabinets against low and
high impedance fields. For the low impedance field he approx-
imated Zw with the wave impedance of an elementary magnetic di-
pole and for the high impedance field he used the wave impedance
of an elementary electric dipole' This approach was then used
extensively by Schulz et al®, cowdell, and Babcock®® Aand, as
noted previously, Monroe? applied it to an important «class of
discontinuous shields by replacing Zi with the impedance of the
discontinuity which was approximated by the impedance of rectan-
gular slot. Experimental support for some - but by no means all -
of these applications was obtained by Moser®, Schulz!®, Cowdelll’

and Axford et al®’. The arrangements of source and shield studied

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636 (July 1973).
J. R. Moser, IEEE Trans. EMC, EMC-9 (1967), 6.
R. Axford, R. McCormack, and R. Mittra, Evaluation of the
Applicability of Standard CW EMI-RFI Shielding Effectiveness
Test Techniques to Assessment of EMP Hardness of Tactical
Shelters, Construction Engineering Research Laboratories,
CERL-TM-M-307, (March 1982).

12 E.C. Jordan, Electromagnetic Waves and Radiating Systems,
Prentice-Hall, Englewocod Cliffs, N.J., (1950).

13 R. B. Schulz, V. C. Plantz, and D. R. Brush, Shielding

Theory and Practice, Proc. 9th Tri-Service Conf.on Electro-

magnetic Compatibility, Chicago, Ill., (Oct. 1963).
14 R. B. Cowdell, Electronics, 40 (April 1967), 92.
15 L. F. Babcock, IEEE Trans. EMC, EMC-9 (Sept. 1967), 45.
16 R. B. Schulz, IEEE Trans. EMC, EMC-10 (March 1968), 95.
17 R. B. Cowdell, IEEE Trans. EMC, EMC-10 (March 1968), 158.
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cylindrical wave evaluated at the inner surface of the shield.

When the wavelength of the field is much larger than the inner
radius of the cylinder, Schelkunoff showed that Zw reduces to

Z
w

]

j2ﬂfuoa ' (2.15)

where a is the inner radius of the cylinder. And for problem
3, Zw is the wave impedance of an elementary magnetic dipole
evaluated at the inner surface of the sphere. When the wave-
length of the field is much larger than the inner radius of the
sphere, Zw becomes formally identical to (2.15) with "a" replac-

ed by the inner radius of the sphere.

Thus, we can summarize the principal results of Schelkunoff's
theory very concisely as follows: The shielding effectiveness
of plane, cylindrical, and spherical metal sheets against elect-
ric and magnetic fields is given by

SE = A + 20109(|Zw|/clzi|) = SE(E) = SE(H), |
where
A = 8.686(muof) * d, , (2.16)
z.= (321£u/0) %,
c ={ 4 for planes and cylinders
3 for spheres,

and Zw is the wave impedance of the source field evaluated at
the surface of the shield.

In the years since Schelkunoff developed his theory, a con-
viction has grown among many investigators that (2.16) is in
some sense a universal shielding formula applicable to virtual-
ly any combination of source and shield provided ¢ and 2  are

w
chosen correctly. Vasaka® was apparently the first to act on

11 C. S. Vasaka, Rept. NADC-EL-N5507, U.S. Naval Air Develop-
ment Center, (1955).
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to

x
i

201og(1/4 k() (2.9)

and

R = 20log(1/3|k]|), (2.10)

respectively. Thus the reflection term for all three problems
can be written in the form

R = 2010g(|Zw|/c|Zi|), (2.11)

where ¢ 1is equal to 4 for problems 1 and 2 and 3 for problem 3.
To evaluate Zi' Schelkunoff again used his assumption that the
shield is a good conductor and that the field within the shield
is a plane wave. He obtained

2, = (32nfu/0) 2. (2.12)

Thus Zi like A 1is independent of shield and source geometry;it
is given by (2.12) for all three problems. In contrast to Zi'zw
is not the same for all three problems, and it is this factor
that largely accounts for the difference in SE shown by the three
shields. Here Zw is equal to the ratio of orthogonal components
of the incident electric and magnetic fields tangent to the sur-
face of the shield. That is,

z=EiHi, 2,13
W = Eo/il (2.13)

Therefore, Zw must be separately evaluated for each source. This
is a relatively straightforward process for all three problems
since the source fields all propagate in a diregtion pgrpendicu-
lar to the surfaces of the shields. That is, E; and H; are
equal to the transverse components of the source fields. For
problem 1, Zw is the characteristic impedance of a plane wave

= b
Zw = (uo/eo) , (2.14)

where Mo and €, are the permeabiltiy and permittivity of free
space. For problem 2, Zw is the characteristic impedance of a

22
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..............

the wall, and B accounts for the second and all succeeding re-
flectionswithin the wall. In most cases of interest, A + R >> B
so that (2.4) reduces to

SE = A+ R ., (2.5)

The absorption term depends only on the conductivity ¢ , perm-
eability u , and thickness d of the metal in the wall of the
shield and on the frequency £ of the source. For all three
problems A is given by

A = 8.686(muof) 4. (2.6)

Schelkunoff obtains equation (2.6) by assuming that the shield is
a good conductor in the usual sense (displacement currents neg-
ligible compared to conduction currents) and that fields within
the wall can be approximated by plane waves regardless of the
shape of the shield or the character of the field outside the
wall. Thus, A is independent of the type of shield and of the
structure of the source field. The reflection term does depend
on both the shape of the shield and the source field, but it
does so in a very simple way. For problems 1 and 2, he
obtained:

R = 20log(lk + 11° /4|k|) (2.7)
and for problem 3
R = 20log(|(k + 1) (k/2 +1)]|/3|k]1, (2.8)

where k 1is theratio of the intrinsic impedance of the shield Zi
to the wave impedance of the incident field Zw. The magnitude
k!l = lzi/zw| is a measure of the change in structure undergone
by the field as it enters or leaves the shield. Large (>>1) or
small (<<1) values of |k| correspond to large impedance mismatch-
es at the surface of the shield which yield large values of R.
For practical shields, (k| << 1 so that (2.7) and (2.8) reduce

21
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of the incident field on one side of the shield and the trans-
mitted field on the other side.

The expressions derived by Schelkunoff for the shield effi-
ciency - now called shielding effectiveness - are remarkable in
several respects. In the first place, the shielding properties
of each combination of source and shield are characterized by a
single expression for SE regardless of whether SE is defined in
terms of electric or magnetic fields. That is, if

_ i t
SE(H) = 2010g(|Hp|/|Hp|) (2.1)
and
- i t
SE(E) = 2010g(|Eq|/|Eq|), (2.2)
then
SE = SE(H) = SE(E), (2.3)

where E; and H; are components of the incident electric and
magnetic fields tangent to the surface of the shield, E; and

H; are corresponding components of the transmitted fields, and

p and g refer to an orthogonal coordinate system. Thus, each of
these structures shields the electric field precisely as well,or
poorly, as it shields the magnetic field when both fields are
generated by the specified source.

Even more striking is the fact that for each problem SE can
be written in the form

SE =A + R + B, (2.4)

where A represents an absorption loss sustained by the field on
a one way transit through the wall of the shield, R represents a
loss due to initial reflections of the field at both surfaces of

20

s AT




TS Y L T T T Ty
- . RIS e P : I
LRSS . . PR SR S PR R ISR A Al W b s Al g ) o - LISt i i e s 2 & 2o el

L2 i e

2. INTRODUCTION

During the late 1930's and early 1940's, S. A. Schelkunoff
developed a theory that attempted to encompass most of what was
known about how an electromagnetic field generated by a time
harmonic source can be effectively excluded from a specified
region through the use of shields constructed from planar, cy-
lindrical, and spherical sections of sheet metal?'!'° He consid-
ered continuous shields with single walls of uniform composition
and thickness,and he based his theory on a model of the source
and shield as a discontinuous transmission 1line driven at one
end by a generator and terminated at the other by a lumped im-
pedance. Using the mathematical analogy between voltage and
current waves on a transmission line and transverse electro-
magnetic fields propagating in a medium, he transformed solu-
tions to the model transmission 1line equations into solutions
of Maxwell's equations for the electric and magnetic fields on
both surfaces of the shield. He called this the transmission
theory of shielding, and he applied it to three classical
shielding problems:

1. A plane sheet exposed to plane wave fields propagating
in a direction perpendicular to the plane of the sheet.

2. A cylindrical shell exposed to fields from current fil-
aments on the central axis of the cylinder.

3. A spherical shell exposed to fields from a small loop

antenna at its center.

For each of these problems, Schelkunoff obtained a closed form
expression representing the shield efficiency (SE) which he
defined as the difference in dB between the amplitude levels

3 S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand,
Princeton, N.J. (1943).
10 S. A. Schelkunoff, Bell System Technical Journal,l7 (1938),
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derived gquantity and a theoretically derived expression would
ordinarily be considered excellent. Evidently Axford et al® did
not consider the " fact that the correction factor is defined in
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terms of the difference between shielding effectiveness as seen
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by two different sources. This means that systematic errors in
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either measured or computed values of shielding effectiveness
will not affect the correction factor provided the errors are
the same for both sources. Since the largest errors observed by
Axford et al are exactly of this type, these errors cancel, and
6 = 6§ - 3 asB.

It is clear from the preceding that the assumptions used in
Monroe? have raised important questions that remain unanswer-
ed: Under what circumstances can small loop and monopole anten-
nas be approximated by magnetic and electric dipoles for near
field calculations? And, when can Schelkunoff's formula be used
to investigate practical enclosures? The first of these is
a technical question that can be answered by the straightforward
(but tedious) method of computing near fields of the antennas and
comparing these with the near fields of the dipoles. The second,
however, involves fundamental problems in electromagnetic
shielding theory that have no easy solutions. These questions,
among others will be discussed in the following sections.

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636, (July 1973).
9 R. Axford, R. McCormack, and R. Mittra, Evaluation of the

Applicability of Standard CW EMI/RFI Shielding Effectiveness
Test Techniques to Assessment of EMP Hardness of Tactical
Shelters, Construction Engineering Research Laboratories,
CERL-TM-M-307, (March 1982).




noted "reasonable" agreement for monopole antennas; but found
that "agreement for loop antennas was not acceptable." They con-
cluded that "extension of the transmission line theory approach
to slotted shields yielded inaccurate results especially for loop
antennas."

. In reaching this conclusion, Axford et al ° apparently over-
looked or discounted the fact that their shielding effectiveness
measurements are quite consistent with the correction factor ob-

tained in Monroe? . This can be seen by taking the difference
m m m
SEM SEL' where SEM

effectiveness at a specified frequency for the monopole and loop,

and SEg are the measured values of shielding

and comparing this difference with SEED - SEMD = 26 from

equation (5.12) of Monroe? where SEED and SEMD are the cor-
responding computed values of shielding effectiveness for
electric and magnetic dipoles and § is the correction factor
(egq. 5.9). For the case of an enclosure with a % meter slot in
one side, the reader can easily verify that the difference be-
tweenSEg - SE® and SEED - SE

L MD
the entire range of frequencies at which measurements were made.

is approximately 6 dB over

Since the accuracy of these measurements is probably no better
than 6 dB,this must be considered satisfactory agreement.Similar
agreement is found in the case of an enclosure with a 1 meter
slot. Furthermore, if one defines an experimental correction
factor &%= (SES - SEE)/Z and compares this with 6§ , the two
quantities will be found to differ by only 3dB over the entire
frequency range. Agreement like this between an experimentally

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636, (July 1973).

9 R. Axford, R. McCormack, and R. Mittra, Evaluation of the
Applicability of Standard CW EMI/RFI Shielding Effectiveness
Test Techniques to Assessment of EMP Hardness of Tactical
Shelters, Construction Engineering Research Laboratories,
CERL-TM-M-307, (March 1982).
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than Schelkunoff's transmission 1line theory. However, they

accepted those results in Monroe? that pertained to contin-
uous ' shields as a "reasonable approximation" without attempting
an independent verification, and they limited themselves to the
case of a discontinuous plane shield with a narrow rectangular
slot. Somewhat surprisingly in view of their stated preference,
they did not use a plane wave expansion to analyze this problem.
Rather, they applied a variation on the classical dipole approx-
imation technique. With this approach,they computed the magnetic
field transmitted through the shield from a magnetic dipole lo-

cated 12 inches away, and with the aid of a reference field they
constructed plots of the shielding effectiveness. Like the pre-
vious group, Axford et al ® obtained no closed form expressions
relying instead on purely numerical results. However, unlike

their predecessors, they did no shielding effectiveness calcula-
tions for plane waves or electric dipole fields. Therefore, they
were unable to compute a correction factor for comparison with
those obtained in the earlier studies. Their experimental work,

although very useful, was also incomplete. It did not include a
direct test of the principal result of Monroe?, namely, the
correction factor, but was 1limited to shielding effectiveness

measurements on a steel enclosure prepared with narrow slots on
one wall. These measurements were made with small loop and mono-

pole antennas following MIL-STD-285 procedures. When Axford et

al compared their measurements with corresponding values comput-

ed with Schelkunoff's formula as modified in Monroe?, they

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636, (July 1973).

9 R. Axford, R. McCormack, and R. Mittra, Evaluation of the
Applicability of Standard CW EMI/RFI Shielding Effectiveness
Test Techniques to Assessment of EMP Hardness of Tactical
Shelters, Construction Engineering Research Laboratories,
CERL-TM-M-307, (March 1982).
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wave expansion technique to solve for the fields transmitted
through a flat sheet of metal from electric and magnetic dipole
sources located 12 inches away. Then they calculated a correc-
tion factor that differs from the one in Monroe? by approxi-
mately 6 dB over a frequency range of 8 decades. They interpreted
this difference as an improvement in accuracy which they cited
in support of their claim that plane wave expansions represent
the most promising approach to shielding problems of this type.
However, they presented no evidence to support their interpreta-
tionof the 6 dB difference, and they could not obtain a closed
form expression for their correction factor. Their method yielded
only numerical results whose accuracy cannot be assessed on the
basis of the information provided in the report.Furthermore, they
treated only the case of a continuous plane shield. They were
unable to apply their technique to the more difficult case of a
discontinuous shield. Thus,despite their claim,Davis et al® did
not make a case for plane wave expansions as a preferred method
for attacking shielding problems.

The problem was then studied by Axford et al’ who used both a
theoretical and an experimental approach. These investigators
also expressed a preference for plane wave expansions as a "more
rigorous and versatile"” method for solving shielding problems

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636, (July 1973).

8 C.R. Davis, E. Villaseca, W. Blackwood, and W. Getson, An
Investigation of the Validity of Applying MIL-STD-285 to EMP
Shielding Effectiveness, Harris Electronic Systems Division,
(15 April 1977).

9 R. Axford, R. McCormack, and R. Mittra, Evaluation of the
Applicability of Standard CW EMI/RFI Shielding Effectiveness
Test Techniques to Assessment of EMP Hardness of Tactical
Shelters, Construction Engineering Research Laboratories,
CERL-TM-M-307, (March 1982).
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imated by Hertzian dipoles in the very near field and that Schel-
kunoff's formula can be adapted to general types of shielded en-
closures. For example, it was pointed out that although Schel-
kunoff originally obtained his formula by applying transmission

line theory to the case of an infinitely 1long metal cylinder
516

enclosing axial current filaments® other investigators

studying
different shielding problems without the aid of the transmission
line theory have obtained formally identical expressions. And,
with the aid of the Leontovich or impedance boundary condition?
it was shown in Monroe? that Schelkunoff's transmission line
theory of shielding could be applied to uniform,continuous, met-
allic structures of quite general shape.However a complete theo-
retical justification for the assumptions employed in Monroe?
was outside the scope of the original project since time was
limited and the study was undertaken in the belief that it would
receive experimental verification. Unfortunately,support for the
project was cut off before any measurements could be made.

Several years after the appearance of Monroe?, the same
problem was taken up by two groups of investigators who attempted
to avoid some of the assumptions of the original study by taking
more rigorous approaches. 1In 1977, Davis et al® used a plane

2 R.L. Monroe, EMP Shielding Effectiveness and MIL-STD-285.
Harry Diamond Laboratories, HDL-TR-1636, (July 1973).
S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand,
Princeton, N.J., (1943).
J. R. Moser, IEEE Trans. EMC, EMC-9 (1967), 6.
P. R. Bannister, IEEE Trans. EMC, EMC-10 (1968), 2.
M. B. Kraichman, Handbook of Electromagnetic Propagation in
Conducting Media, U.S. Gov't Printing Office,D.C., (1970).
C. R. Davis, E. Villaseca, W. Blackwood, and W. Getson, An
Investigation of the Validity of Applying MIL-STD-285 to EMP
Shielding Effectiveness,Harris Electronic Systems Division,
(15 April 1977).




ficant degree of shielding (>10 dB) against dipole fields. In
fact, it must be valid for all such enclosures since it is pre- :
cisely the impedance mismatch between field and the wall that if
largely accounts for the shielding properties of the latter. In T
the case of an ideal continuous enclosure with no significant

apertures or seams, Zc is equal to the intrinsic impedance of
the metal Zi' and it can easily be verified that Zi for metals

most commonly used in enclosures (copper, steel , and aluminum)

. I Fateta e e

T
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L does satisfy the preceding inequality for all dipole fields at

- frequencies greater than 10 Hz. Figure 4 in Monroe? provides
k such a verification. ©Nonideal enclosures with surface disconti-
- nuities allow external fields to reach the interior without pass-
ing directly through any metal, and in this case the shielding
properties of the enclosure may be determined primarily by a :
discontinuity rather than by Zi. If a discontinuity is large Sé
enough, the characteristic impedance of the wall will be B
equal to the impedance of the discontinuity Zd which is likely
to be very much larger in magnitude than Z,. That is, |Zc| = -
]Zdj >> ]Zil. Since 2, can vary over a wide range depending E:
on the dimensions of the discontinuity, the inequalitylzcl = >
lzdl << IZwl will not be satisfied by all discontinuous enclo- -
sures. However, it was shown in Monroe? that enclosures
with discontinuities in the form of a narrow rectangular slot E:

do indeed have impedances satisfying this relationship.Moreover, e

NG o EY

ﬁf such enclosures comprise a very important class since the rec- o
._ tangular slot is a working approximation to the type of seams
*: and joints used most frequently in real structures' 5*
) ——

f3 i Plausible arguments were given 1in Monroe? to support the
the position that small loop and monopole antennas can be approx- ﬁﬁ

*E 2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285, EE
N Harry Diamond Laboratories, HDL-TR-1636, (July 1973). )
e 4 W. Jarva, IEEE Trans. EMC, EMC-12 (1970), 12.




that would have been measured if the enclosure had been exposed
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to a plane wave source at the same frequency. The correction

factor allows one to estimate the protection afforded by a par-
ticular enclosure against plane wave EMP fields while avoiding

the difficulty and expense of a conventional EMP simulator.
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The analysis carried out in Monroe? is based on three
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fundamental assumptions. The first holds that, for purposes of
3 computing source fields, loop and monopole antennas can be re-

} placed by elementary magnetic and electric dipoles (Hertzian di-

'T' " "..' ‘."..".. '.. .

l poles) when the distance between the antenna and the point where

Ta

X the field is computed is approximately equal to the loop diameter
. and the monopole length. The second claims that Schelkunoff's
S shielding formula® with some modifications is applicable to a gen-
ﬁ eral class of sources and enclosures. BAnd the third maintains

that the wave impedance of dipole fields incident on the surface

c e PR
TR

of a typical metallic enclosure are much larger in magnitude

Ers
¢ 412

than the characteristic impedance of the enclosure wall when the
dipole is located 12 inches away. That is, |Zc| << IZWI where

0 5 DAY

Zc is the characteristic impedance of the enclosure wall, Zw
is the wave impedance of the dipole field, and Zc and Zw are

evaluated at any point on the surface of the enclosure. The -
correction factor is obtained by substituting appropriate expres- rj
sions for Zc and Zw into Schelkunoff's formula and applying the
preceding inequality. {j

Of the three assumptions employed, only the 1last can be .-

readily justified for the class of metallic enclosures consider- ~

f'." .

ed in Monroe? , namely, those enclosures that provide a signi-

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636, (July 1973).

3 S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand,
Princeton, N.J., (1943).
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there would be a distinct possibility of under shielding if these
predictions were used in the design of shielded enclosures accord-
ing to Bridges and Miller!® . Therefore, they recommend that
Schelkunoff's equation not be used to predict the performance of
shielded enclosures against low frequency fields. 1In defending
Schelkunoff's equation, Schulz?® claims that Cowdell'* and Babcock?!®
misused the theory; however he does not state specifically how

they misused it.

Axford et al’also observed discrepancies between their mea-
surements on a slotted enclosure and predictions based on Schel-
kunoff's equation as modified for discontinuous shields by
Monroe?. However, these were much smaller than the discrepancies
noted by Bridges and Miller!’, They ranged from 10 to 20 dB over
frequencies from 100 KHz to 20 MHz. Moreover, the predictions
were all less than the measurements so that in this case a pessi-

mistic or conservative estimate of shielding effectiveness 1is

obtained.

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636 (July 1973).

9 R. Axford, R. McCormack, and R. Mittra, Evaluation of the

Applicability of Standard CW EMI/RFI Shielding Effectiveness
Test Techniques to Assessment of EMP Hardness of Tactical
Shelters, Construction Engineering Research Laboratories,
CERL-TM-M-307, (March 1982).

14 R. B. Cowdell, Electronics, 40 (April 1967), 92.

15 L. F. Babcock, IEEE Trans. EMC, EMC-9 (Sept. 1967), 45.

18 J. E. Bridges and D. A. Miller, IEEE Trans. EMC, EMC-10
(1968), 175.

19 R. B. Schulz, IEEE Trans. EMC, EMC-10 (March 1968), 176.
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Critics of the extended transmission theory of shielding
usually point to its somewhat restricted and apparently artifi- ;;
cial basis to explain these discrepancies. They emphasize the 9o
fact that each source and shield in problems 1, 2, and 3 is care-
fully chosen so that the surface of the shield coincides with
equiphase surfaces of the incident field exactly as required in
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al, 2, or 3 dimensional transmission line. Since this condition ;5.
is not satisfied in most arrangements of source and shield, :3
they argue that the theory cannot logically be extended to the ;;i
general case. This argument is correct, but beside the point. ;i;

‘o

The experimental work by Moser, Schulz, and Cowdell cited pre-
viously and the theoretical work of Moser and Bannister demon-
strate conclusively that in at least one case the theory is in
fact wvalid even though the shield is not an equiphase surface
of the source. Evidently this is not a necessary condition for

Schelkunoff's equation.

One must then ask: What condictions are necessary if Schelkun-
off's equation is to be valid? One such condition is almost Er_
obvious, but is rarely, if ever, mentioned in the shielding lit- e
erature. In all three of his shielding problems, Schelkunoff “.”
assumes that the wave impedance of the field that emerges from .:
one surface of the shield is equal to the wave impedance of the é&;
field that was incident on the other surface. That is, St

i1 t,.t e

Z, = Eq/Hp = Eq/Hp. (2.17) ﬁ%f

It is this assumption that accounts for the fact that the trans- B
mission theory predicts equal shielding € 'r electric and magnet- EL~
ic fields. If (2.17) is not satisfied, then S
E;/E; #H/H and SE(E) # SE(H) . (2.18) :

In this case, equation (2.16) cannot be valid since it cannot Ei:
equal both SE(E) and SE(H). Therefore, (2.17) is a necessary 'Ei
condition for Schelkunoff's equation, and one should expect to :jg
encounter difficulties when applying Schelkunoff’s equation in QE,
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situations where (2.17) is not satisfied.

Schulz?!® was apparently aware of such difficulties when he
pointed out that (2.17) will not be satisfied in the case of a
practical shielded enclosure subject to an external field. He
suggested that this fact contributed to the discrepancies be-
tween predicted and measured shielding effectiveness for enclo-
sures. He described this simply as an erroneous assumption, but
it can be described more accurately as a basic limitation of the
transmission theory of shielding.

In this report, we will present a theory of shielding that
does not use the transmission line model and does not assume the
validity of (2.17). We will limit our development to the case of
an arbitrary electromagnetic source located outside of a region
that is either wholly or partly enclosed by a thin metallic
shell; however it will be clear that our approach is equally
valid when the source is located inside the shell., Like Schel-
kunoff, we will develop this theory by solving a series of canon-
ical shielding problems; but, instead of obtaining exact solu-
tions to a restricted class of problems, we will obtain approxi-
mate solutions to a somewhat larger class of problems. From these
solutions we will recover some of the results of the extended
transmission theory and pinpoint some of the errors that occur
when transmission theory is applied in situations where its basic

assumptions are violated.

Impedance boundary conditions are the tools we will use to
construct approximate solutions to our shielding problems. A
general discussion of impedance boundary conditions is given in
the following section, and a technique by which they can be

applied to shielding problems is described in Section 4. 1In

12 R. B. Schulz, IEEE Trans. EMC, EMC-10 ( March 1968), 176.
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Section 5, source fields of general interest are cast in a form
that is suitable for use with impedance boundary conditions.
These fields and the impedance boundary conditions are then used
in Sections 6 and 7 to construct approximate solutions to a
series of shielding problems of increasing complexity. In Sec-
tions 8 and 9 ,we consider transient electromagnetic sources and
extend some of our results to time domain shielding problems. In
later sections, we apply these to shielded enclosures exposed to
EMP fields.




3. IMPEDANCE BOUNDARY CONDITIONS

3.1 General Theory

An impedance boundary condition (IBC) is a relationship
between an impedance function and an electromagnetic field at the
interface separating two electrically distinct media where the
impedance function characterizes one medium and the electromag-
netic field is defined in the other. These conditions stand in
contrast to the standard boundary conditions employed in electro-
magnetic theory which establish relationships between comparable
fields in both media. In its most frequently applied form, the
IBC relates tangential field components at the interface to the
impedance looking into one medium. With the two media labeled
M1l and M2 as shown in figure 1, this condition can be written in
vector form as follows:?®

7 n x (nx EI) = -n2 (n x HD, (3.1)

: where EI and H1 are electric and magnetic fields in M1, n is the
unit vector normal to the interface pointing outward from M2, n2
l is the impedance lookiny into M2, and it is understood that (3.1)
' applies only at the interface. Equation (3.1) is an approxima-
E tion,and only under special circumstances can it accurately rep-
resent the structure of the electromagnetic field at the inter-
i face between two media. It cannot be used to replace standard
. boundary conditions in the general case. However, in many cases
} of interest, it has been shown that (3.1) is a valid approxima-
tion,and, in these cases, the IBC can be wused to simplify the

b B

problem of determining the fields in M1 and M2.

This simplification derives from the fact that (3.1) decouples
the fields in M1 from the fields in M2 in a way that does not

} 20 T. B. A. Senior, IEEE Trans. on Antennas Propagt., AP-29
No. 2 (1981), 826.
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IMPEDANCE BOUNDARY CONDITION.:

n x (n x EI) = -n2 (n x HI)

S Ma
(E:,Hi)

Boundary Mi, M2

Figure 1. A medium _Ml containing a source § and an electro-
magnetic field El, Hl whose tangential components n x El1 and
n x Hl at the boundary between Ml _ and a second medium M2 act
as a primary source for the field E2, H2 in M2,
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introduce spatial derivatives of the fields at the interface.
This means that E1 and HI can be computed independently of the
fields (E2,H2) in M2 and that both sets of fields can be obtain-
ed by applying standard techniques to Maxwell's equations. One
first solves Maxwell's equations for E1 and HI using (3.1) to
replace M2 and then solves for E2 and H2 in M2 using E1 and HI
at the interface to replace Ml. Since this two step process will
usually be much easier than solving Maxwell's equations directly
for EI, W1, E2, and H2, the utility of (3.1) is obvious. More-
over, if one is interested only in the fields in M1, then E2 and
H2 need not be computed at all. Conversely if one is interested
in E2 and H2, then it is only necessary to solve for E1 and HI1
at the interface in order to determine the fields throughout M2.
The latter describes the usual situation in shielding problems
where M2 can be identified with the shielded volume, M1l is the
region (usually free space) containing one or more electromagnet-
ic sources, and only the fields transmitted into the shielded
volume are of interest. In following sections it will be seen
that the decoupling provided by (3.1) is a powerful technique
for obtaining approximate solutions to a variety of shielding
problems.

To take advantage of the IBC, it is necessary to establish
the validity of (3.1) at the interface that defines the problem
of interest. 1In general terms, this requires one to show that
E2 and H2 propagate into M2 along n in the manner of a uniform
prlane wave. One way to do this is to show that the variation
of E2 and HZ along n is much larger than the variation of El1 and
H1l at the interface in directions transverse to n . Specifical-
ly, one can show that the normal derivatives of E2 and H2 are
much larger in magnitude than the transverse derivatives of EI
and H1 at the interface. When this condition is satisfied, E1
and H1 are approximately equal phase source fields at the inter-
face, and E2 and H2 propagate into M2 along n as plane waves.

33
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The impedance function is then well defined, and (3.1) accurately
represents the boundary condition at the interface.

3.2 1IBC for a Uniform, Planar Surface

The validity of (3.1) has been demonstrated under rela-
tively weak restrictions in the case of a planar interface sepa-
rating two homogeneous half-spaces as shown in figure 2 where Ml
is free space and M2 consists of a material with complex permit-
tivity €2 and permeability u2. Equation (3.1) can be written
in scalar form as follows

Elx = -n2H1y ’ Ely = n2H1x at z=0, (3.2)

where the fields are referred to a rectangular coordinate system
with its origin at the interface and its 2z axis directed out
of M2 (n = iz). It has been shown? that a condition sufficient

to insure the accuracy of (3.2) is

|u2e2| >> ulel = Ho€or (3.3)

where €2 1is given by
€2 = € - jo/w , >0, (3.4)

and €5 and M, are the permittivity and permeability of free
space. In (3.4), o is the conductivity, and a time variation of
exp(jwt) has been assumed. When (3.3) is satisfied, the fields
in M2 are determined by one-dimensional, homogeneous wave

equations:
)
B2, 242e287 = o0, (3.5)
d 22
)
O"HZ . 202¢2HZ = O, (3.6)
3 2?2

21 T. B. A. Senior, Appl. Sci. Res., 8 (B) (1960), 418.
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Impedance Boundary Condition y

E1x= -n2 Hly ’ Ely = n2 H1x

2 < - ‘ = -z

w N

Mi:pt,e1 ‘ M2:pn2,e2

-y

| rrer<<|pzezl |

Figure 2. Two half-spaces M1 and M2 with a planar interface
where an impedance boundary condition is satisfied by virtue of
the relation wul €l << |u2 €2| .
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25 E. L. Feinberqg, J. Phys. USSR,8 (1944), 317.
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and the impedance looking into M2 is equal to the intrinsic im-
pedance of M2

n2 = Zi = /u2/e€2 . (3.7)
Since u2 = Mo in most cases of interest, (3.3) implies
In2] << z, = /uo/eo = 120m (ohms), (3.8)

where Z, is the impedance of free space. That is, the magnitude
of the impedance looking into M2 is very much smaller than the
impedance of free space.

Since the real part of u2e2 is defined to be positive, sol-
utions to (3.5) and (3.6) travelling in the -z direction can be

written in the form
EZ2,H2 « exp( jwzv/T2e2 ) = explwz(-Im( ) + jRe( )], (3.9)

where Re( }) and Im( ) are the real and imaginary parts of
Yu2e2 respectively. 1In (3.9), the decrease in amplitude with
distance in M2 is controlled by the factor wzIm( ) which de-
fines the skin depth Gsaccording to the relation

§, = 1/w|Im(/u2e2 ) |- (3.10)
When Gs is small, the fields decay rapidly in the =~z direction.

When (3.3) is satisfied, E2 and HZ2 are constrained to propa-
gate into M2 like plane waves along the 2z axis, and the valid-
ity of (3.2) is assured. The latter is frequently referred to
as the Leontovich Boundary Condition® although it was used
prior to Leontovich by Rytov?® , Alpert? , and Feinberg? during
World War II in their work on ground wave propagation. Since

22 M. A. Leontovich, Investigations on Radiowave Propagation,
Part II, Moscow: Academy of Sciences, (1948).

23 S. M. Rytov, J. Exp. Theor. Phys. USSR, 10 (1940), 180.

24 I. L. Alpert, J. Tech. Phys. USSR,10 (1940), 1358.




then, these and other investigators have shown that (3.1) is not
limited in application to half-spaces but can be applied direct-
ly to more complicated structures such as the following.

3.3 Uniform, Planar Sheets

When the half-space M2 is replaced by a sheet of the
same material with a uniform thickness d as shown in figure 3,
the fields inside the sheet still satisfy (3.5) and (3.6) pro-
vided (3.3) remains valid. The impedance boundary condition
(3.2) is then applicable at z=0 if the skin depth és satisfies

the additional condition

6, < d . | (3.11)
Since fields decrease in amplitude by a factor of el = .37 =
8.5 dB while travelling adistance equal to one skin depth in
the sheet, (3.11) means that fields making a round trip from
z=0 to 2z = -d and back to 2z=0 will be reduced by at least a
factor of e—2 = .14 = 17 dB. This condition is necessary to
prevent fields that are reflected at z = -d from reaching 2=0
in sufficient strength to interfere with E1 and HI at 2=0

and render (3.1) inaccurate.

3.4 Inhomogeneous, Planar Sheet

If the electrical and magnetic properties of the sheet
in figure 3 are functions of the lateral coordinates x and vy,
that is w2 = f(x,y}) and €2 = g(x,y), then the derivatives of
u2 and €2 with respect to x and y do not appear in the IBC?Z ,
and (3.2) remains valid at all points on the boundary z=0 where
(3.3), (3.8), and (3.11) are satisfied. 1In this case, (3.2) with
n2(x,y) = /u2(x,y)/ €2(x,y) can be considered a local boundary

condition.

21 T. B. A. Senior, Appl. Sci. Res., 8(B) (196C), 418.
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Figure 3. A planar sheet of uniform thickness d separating
media where an impedance boundary condition is satisfied at
z = 0 by virtue of the relations ul €l << |u2 €2| and 6 <
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3.5 Uniform, Homogeneous Sheet with a Narrow, Rectangular
Slot

When a narrow rectangular slot is cut through an other-
wise uniform, homogeneous sheet, the sheet is rendered locally
inhomogeneous and anisotropic - inhomogeneous because the effec-

tive permeability, permittivity, and imbedance of the slot differ

from those of the solid sheet and anisotropic because these
quantities depend on the orientation of the slot. If the slot is
oriented as shown in figure 4(a), then Elx and Hly will see a
different impedance looking into the slot than will Ely and Hlx.
With these two impedances denoted n%(x,y) and n%(x,y), a genera-
lized IBC can be written

El, = -n2(x,y)Hl  ; El = n2(x,y)Hl_, (3.12)

where, in general, n% and n% are functions of the slot dimen-
sions (1 and w), the permeability and permittivity of the sheet
( u2 and €2), the permeability and permittivity of the material
in the slot (if any), and w - in addition to X and vy for
-1/2 < x < 1/2 and -w/2 < y < w/2. A similar IBC can be
written for the vertical slot shown in figure 4(b)

Elx = -n%(x,y)Hly : Ely = n}2,(x,y)H1x . (3.13)

If the vertical slot is identical to the horizontal slot, then

n2(0,0) = ng(o,m and  n2(0,0) = n2(0,0) . (3.14)
A condition sufficient to insure that EZX, H2y, E2y’ and = %
propagate in the manner of plane waves can be written
In2]
X Y ey
| ngl << By = ugle, (3.15)
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Horizontal Slot y IBC at x=y=0

-Ely= 13 (0,0)H1y

12,€62,M2 - Ely= n; (o,0)H1y
Hiy || Ety
ng(x,y) H,
o —>
7( “g-,(X'Y) E1X
<« 172 —>

y
Vertical Slot /\
IBC at x=y=0
~Ely= ﬂ;!; (0.0) Hly
n2,€2,M2 . Ely= 775 (0,0)Hiy
H1
E1
Y| Hiy
3 S = X
I Ely
ni (x¥)
Ya . [(x.y)
n2
l y
>|wa <

Figure 4. Impedance boundary conditions at the center of hori-
zontal (a) and vertical (b) slots. For identical slots:

ng = n;; n§= n)i( at x =0, y = 0.
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’:M3 interface at P (x,y,-d), formal expressionsforEBx(x,y—d),
!y(x,y,-d), H3x(x,y,—d), and H3y(x,y,—d) in termsof correspond-~

g components of the internal fields can be written as follows:

E3x(x,y,-d) TE E2x(x,y,—d) ’

E3y(x,y,-d) TE E2y(x,y,-d) ,

(4.21)

H3x(x,y,-d) TH H2x(x,y,—d) ,

H3y(x,y,-d) TH H2y(x,y,-d) ’

nere TE is the transmission coefficient for electric fields and
H is the transmission coefficient for magnetic fields.For plane
ave fields incident normally on a planar surface separating two

issimilar media, TE and TH are given by?

TE 2 n3 / (n2 + n3) ,

(4.22)
TH

2 n2 / (n2 + n3) ,

here n2 is the wave impedance of fields in M2 and n3 is the wave

mpedance of the fields at z = -d looking into M3.

Finally, by substituting (4.19) into (4.21), we obtain the
ollowing expressions for the fields inside the shield at
“(x,y,-d) in terms of the source fields incident on the outside

f the shield at a point P(x,y,0) not located in a slot:

E3, (x,y,-d) = - 2 n2 Hls(x,y,O) TE exp(-jwd/n2 €2 ) ,
E3, (x,y,-d) = 2 n2 Hli(x,y,O) TE exp(-jwd/u2 €2 ) ,
(4.23)

1]

3, (x,y,-d) 2 Hli(x,y,O) TH exp(-jwd/n2 €2 ) ,

H3 (x,y,-d) 2 Hlj(x,y,O) TH exp(-jwdvVi2 €2 )

S.A. Schelkunoff, Electromagnetic Waves, Van Nostrand,

Princeton, N.Y., (1943).

55




e e e O N T R 3 e Be Yihe e ANl Ban Jhis Jh b SN S At Al Audh ) N TN TR A LS TS Cafiicastic et abul ik SNk AN

H2_ (xX,Y,2) 2 Hli(x,y,O) exp( jwzvu2 €2 ) .

H2 (x,y,2) = 2 H1§(x,y,0) exp( jwz/uz €2 ) »
And by a similar process using (4.7), we obtain the following

expressions for the fields launched into M2 when P(x,y,0) lies
in the i-th slot:

i i i
E2x(x,y,z) = - 2 n2 Hls(x,y,O) exp( jwz w2 / n2 ) ,
X Yy X X
i i
H2_ (x,y,z) = 2 H1°(x,y,0) exp( jwz u2 / n2 ) .
Y Y X X
(4.20)
i i i
E2 (x,y,2) = 2 n2 Hli(x,y,O) exp( jwz w2 / n2) .,
Y Y Y Y
i i
B2 _(x,y,2) = 2 H1 (x,y,0) exp( jwz w2 / n2)
Y Yy

With (4.19) and (4.20), the solution to the internal problem
is completely determined. This solution will also include field
components in the 2z direction (E2z and HZZ); however, these
are small compared to the transverse components, and we will not
display them here. They can be computed by substituting (4.19)
and (4.20) into Maxwell's Equations.

Having solved the internal problem for E2 and H2, we can now
address the shielding problem. The latter requires us to com-
pute the fields from S that penetrate M2 and reach the shield-
ed volume M3 as shown in figure 5. Therefore, our objective is
to compute the tangential components of E3 and H3 at a point
P“(x,y,-d) on the interface between M2 and M3. Since these
fields are generated by partial reflection and transmission of
the internal field (4.19) and (4.20) incident normally on the
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the validity of this approximation is due to the fact that the
tangential magnetic field at the boundary is equal to the sum of
two large, nearly equal quantities

i, x Hl(x,y,0) = i, x [AI°(x,y,0) + HI" (x,y,0)] ,

. . . C . —_— . ==
which is insensitive to a small error H1” in H1~ . Hence,

i x HI(x,y,00 = 2 i x H1®(x,y,0) , (4.17)

which implies (4.11). This is in contrast to the tangential
electric field at the boundary which is equal to the difference
between two large, nearly equal quantities. Here a small error
E1” in EI°' cannot be neglected because it would produce a large
error in the tangential electric field. It is precisely the IBC
that allows us to compute E1°~ so that the boundary condition can
be satisfied.

With (4.11), we can eliminate Hli(x,y,O) and Hl;(x,y,O) from
{4.10) and obtain

E2, (x,y,0) = = 2 n2 HIZ(x,y,0) ,

E2,(x,y,0) 2 n2 H1S(x,y,0) ,

(4.18)

H2, (x,y,0) = 2 Hli(xly,o) ,

H2, (x,y,0) = 2 Hlj(x,y,O)

Substituting (4.18) into (4.6), we obtain the f»ollowing expres-
sions for the fields launched into M2 at P(x,y,0)

E2x(x,y,z) - 2 n2 HI;(x,y,O) exp( jwzv/p2 €2 ) ,

(4.19)

E2y(x,y,z) 2 n2 Hli(x,y,O) exp( jwzv/u2 €2 ) ,
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component of the reflected magnetic field is approximately equal
to the tangential component of the incident field:

~ ~

i, x BT (x,y,0) = i x HI® (x,y,0) . (4.11)

Now it must be clearly understood that in using (4.11), we are
not attempting to substitute a perfect conductor for a good con-
ductor. The difference between a perfect conductor and a good
conductor can be described as follows: At the surface of a per-
fect conductor the tangential electric field is zero

i x El(x,y,0) = i, X (E1°(x,y,0) + EI (x,y,0)] =0 . (4.12)

This implies

A ~

i % EI" (x,y,0) = - i_ X E1°(x,y,0) , (4.13)

and

~ ~

i x HI'(x,y,0) = i_x HI®(x,y,0) . (4.14)

On the other hand, at the surface of a good (but not perfect)

conductor, i x EI1(x,y,0) is small but not zero. This implies

i, El1 (x,y,0) = - i % E1°%(x,y,0) + E1” , (4.15)
where |EI”|<<|E1%|,|EI°| and
i x H1® (x,y,0) = i, HI® (x,y,0) + HI" , (4.16)

where |H1"|<<|HI®|,|HI"
imation represented by (4.11) is identical to (4.14), this fact

. Although it happens that the approx-

is irrelevant in the present application. Equation (4.11) 1is

actually an approximation to (4.16). As Adler et al® point out,

26 R, B. Adler, L. J. Chen, and R. M. Fano, Electromagnetic

Energy Transmission and Radiation, John Wiley and Sons,Inc.,
N.Y., p. 432 (1960).
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I1f the external problem has been solved for E1 and HI, then
sz(x,y,O), E2y(x,y,0), H2x(x,y,0), and H2y(x,y,0) can be comput-
ed directly from (4.9) to obtain a solution to the internal
problem. However, a complete solution to the external problem
is not necessary in order to solve the internal problem. Suppose
the external problem has been solved for H1 but not El. Equation
(4.9) can still be used to compute H2x(x,y,0) and H2y(x,y,0),but
it cannot be used to compute E2x(x,y,0) and E2y(x,y,0) because
Elx(x,y,O) and Ely(x,y,O) have not been determined. Here the IBC
(Equations(4.4) and (4.5)) can be used to replace Elx(x,y,O) and
Ely(x,y,O) in (4.9). With (4.4) this gives

E2, (x,y,0) = - n2 [HIZ(x,y,0) + Hl (x,y,0)] ,
E2,(x,y,0) = n2 [H1Z(x,y,0) + HI_(x,y,0)] ,
b4 (4.10)
H2, (x,y,0) = HIZ(x,y,0) + HIL(x,y,0) ,
H2, (x,y,0) = HIS(x,y,0) + HI (x,y,0) -

And with (4.5) similar expressions can be written when P(x,y)
lies in the i-th slot. When the right side of (4.10) is known,
E2x(x,y,0), E2y(x,y,0) etc., can be determined as before. Thus,
the IBC can be used to obtain the internal field even when the
external problem has not been completely solved.

But how can Hlx(x,y,O) and Hly(x,y,O) be computed without
resorting to a complete solution to the external problem? Since
our objective is to solve the internal problem in terms of the
source fields (Hli(x,y,O) and Hls(x,y,O), this question reduces
to: How can we compute the reflected fields Hli(x,y,O) and
Hl;(x,y,O) without solving the external problem? To answer this
question, we make use of an approximation that is always valid
at the surface of a good conductor. Namely, that the tangential
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and

i i
E2 (x,y,2) = E2 (x,y,0) exp( jwz wug / n2) ,

i i
HZy(x,y,z) = H2y(x,y,0) exp( jwz u% / nﬁ ),

i i (4.7)
Ezy(x,y,z) = Ezy(x,y,O) exp( jwz u% / n§ ),

i i .
H2 (x,y,2) = H2 (x,y,0) exp( juz u)2, / n)2, ),

where (4.6) applies when P(x,y,0) is not in one of the slots and
(4.7) applies when P(x,y,0) lies in the i-th slot.

Equations (4.6) and (4.7) show clearly how the IBC simpli-
fies the solution to the internal problem: To determine the in-
ternal fields traveling away from the interface, we need only
evaluate sz(x,y,O), sz(x,y,O), Ezy(x,y,O), and H2x(x,y,0).This
can be done by applying standard boundary conditions at z = 0
since these conditions are in no way superceded by IBC's. Con-
tinuity of tangential field components at z = 0 gives

~ ~

lim [ i. x EI(x,y,2) ] = lim [ i x E2(x,y.,z) 1 ,

+ Z _ A
z—>0 z—>0
and (4.8)
lim [ i, x HI(x,y,2) ] = lim [ i, x H2(x,y,2) ] .
+ -
z—>0 z—>0

Or, explicitly

E2_(x,y,0) = El_(x,y,0) = Eli(x,y,O) + E1§(x,y,0) ,
E2,(x,y,0) = El(x,y,0) = EI;‘X'Y'O’ + El;(x,y.o) '
(4.9)
H2_(x,y,0) = H1_(x,y,0) = H1Z(x,y,0) + HI_(x,y,0) .
r
H2_ (x,y,0) = H1 (x,y,0) = HI;(x,y,O) + HLL(x,y,0) .
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that li is much smaller than the wavelength of E1 and H1 and if
d 1is sufficient to reduce the amplitude of any field passing
through any slot by at least 10 dB ,then it can be shown that condi-
tions (3.15) and (3.26) are satisfied. Under these conditions,
an IBC will be valid at all points on the surface of M2. At the
point P(x,y,0) on ES1l, the IBC can be written

E1Z(x,y,0) + E1_(xX,y,0) = -n2 [H1 (x,y,0) + H1§(x,y,0)]; )
4.

n2 [H13(x,y,0) + H1)(x,y,0)],

Els(x,y,O) + El;(x,y,O)

when P(x,y,0) is not a point in one of the slots, and

i
r
E1} (x,y,0) + El_(x,y,0) = -n2(x,y) [Hl?(x,y,O) + HI_(x,y,0)],
i (4.5)

EI;(X.Y,O) + E1§(x,y,0) n%(x,y) [Hli(X.y,O) + Hli(x,y,o)],

when P(x,y,0) is in the i-th slot. These IBC's imply that E2x,
H2y, E2y, and H2x have the form of plane waves traveling away
from the interface in the -z direction. We can therefore write
these fields in the following form using (3.9), (3.20).and (3.21):

E2x(x,y,z) = E2x(x,y,0) exp( jwzvu2 €2 ) ,
H2 (x,y,2) = H2_(x,y,0) exp( jwzvu2 €2 ) ,
y y (4.6)
E2y(x,y,z) = E2y(x,y,0) exp( jwzvu2 €2 ) ,
H2x(x,y,z) = H2x(x,y,0) exp( juwzvu2 €2 ) ,
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Since the 2z axis is constrained to pass through C, the locat-

ion of O with respect to the edges of ES1 depends on S. But
the position of S is arbitrary with respect to ES1; hence, the
position of O on ES1 is also arbitrary. That is, the coordin-
ate system is attached to the source, and must move when the
source is moved parallel to ES1l. Here, again, it is convenient
to choose a special arrangement: namely, the one shown in
figure 5(b) where the 2z axis passes through the geometric
center of ES1. This in no way limits the application of IBC's
since one is always free to move the location of 0 on ES1 when
S is moved. With this understanding,the components of EI and
H1 tangent to ES1 at a point P(x,y,0) can be written from (4.1):

El (x,y,0) = E15(x,y,0) + E1(x,y,0) ,

El (x,v,0) Eli(x,y,O) + EI;(x,y,O) ,

(4.3)

H1, (x,y,0) = HLJ(x,y,0) + H1](x,y,0) ,

H1 (x,y,0) Hli(x,y,O) + H1§(x,y,0) )

Our first objective is to compute E2x(x,y,z), E2y(x,y,z),
H2x(x,y,z), and H2y(xéy,z) for -4 < 2 < 0 in terms of the tan-
gential components Hlx(x,y,O) and Hly(x,y,O) of the source mag-
netic field.

If M2 like all electromagnetic shields is composed of
material belonging to the class of "good conductors" and if the
thickness d of this material is sufficient to reduce the amp-
litude of any field passing through the shield by at least 10dB,
then it can be shown? that conditions (3.3) and (3.11) are

satisfied. Likewise, if all the slots penetrating M2 are such

2 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD-285,
Harry Diamond Laboratories, HDL-TR-1636, (July 1973).

48




“ T T, N T Sl S, 4
AT AT T T T T P TP e e e
= . B R A . . N A T e

and thickness except in certain areas where they are penetrated
by narrow, rectangular slots S1, S2...Sn. The material compris-
ing the uniform part of the shield is characterized by permeabil-
ity u2, permittivity €2, and intrinsic impedance n2 as defined

in section 3.2, The slots are characterized by pairs of functions
representing their effective permeabilities, permittivities,and
impedances as defined in sect;on 3.5. For tbe i-th s}ot, thgse
can be denoted by pz and u% , s; and s% , and né and n%

respectively. The lengths and widths (not shown in the figure)

of the slots are li and L and for convenience we have assumed
that they are oriented with their lengths in either the x or vy
directions. Each slot is assumed to lie in a single sheet, but

its location is otherwise unrestricted. The source with dimen-

sions a,b,c,is located with its geometric center C at adistance
D from the nearest sheet ES1. The dimensions of ES1 are H, W,
and d.

M2 can easily be transformed into several structures of con-
siderable theoretical and practical importance. By specifying 6
or more sheets ES6, ES7 ...., it can become an enclosure comp-
letely surrounding M3. By eliminating all sheets except ES1 and
letting H,W ——» «© , it becomes an infinite plane sheet separa-
ting two half-spaces. And, by letting d — », it becomes a
simple half-space. 1In following sections we will consider exam-

ples of each of these structures,.

To facilitate the discussion, we adopt a rectangular/cylind-
rical coordinate system in which the origin O is located on the
outside surface of ES1 and the =z axis passes through C point-
ing away from ES1. With this arrangement, the x,y (p,¢) plane
includes the surface of ES1. The orientation of the x,y axes
is arbitrary; however, for convenience, we assume that the axes

are parallel to the horizontal and vertical edges of ES1.
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Figure 5. A generalized electromagnetic shield M2 with an
arbitrary source S.
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4. APPLICATION OF IMPEDANCE BOUNDARY CONDITIONS TO SHIELDING
PROBLEMS

IBC's were developed originally to simplify certain scatter-
ing and propagation problems in which an electromagnetic source
(S) illuminates a medium M2 that is immersed in a homogeneous
medium M1 as shown in figure 1. These are called external prob-
lems because the sole objective is to compute the fields EI and
HI in M1

S ie

= + El1 (4.1)

S r

= + H1™ ,

z o
mow T

where E1° and HI® are the source fields and E1® and HI® are the
reflected fields from M2, An IBC applied at the interface I
between M1 and M2 ,

ol ]

x (n x (EI° + EIY)) = -n2 (n x (HI° + HIY)) . (4.2)

simplifies such a problem by decoupling the fields in M1 from
those in M2. This allows one to solve the external problem for
E1 and H1 without the necessity of solving the "internal"problem
for E2 and HZ2. However,in many applications such as underground
communications and electromagnetic shielding, the internal prob-
lem is of equal or greater importance than the external problem,
and it is natural to ask if (4.2) can be used to simplify the
problem of computing E2 and H2. In this section we will show
that the IBC can indeed be used to obtain approximate solutions
to certain internal problems by relatively simple means and that
the latter lead naturally to solutions to a general class of
shielding problems.

We consider the problem of computing fields inside the gene-
ralized electromagnetic shield M2 shown in figure 5 when it is
illuminated by an arbitrary source S. The shield consists of
planar sheets ES1, ES2...ESm which are uniform in composition
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As in the case of the homogeneous sheet, the fields in the
slot must satisfy a condition involving the skin depth and the
sheet thickness in addition to (3.15) in order for the IBC's to
accurately represent the structure of the fields at the inter-

face. Here, there are two skin depths {&x and &y defined as

follows
§x = Lx/U£ ,
(3.25)
Sy = L_/u2
Yy y Uy ’
and the condition (analogous to (3.11)) is
§ X
< d . (3.26)
Sy

This condition insures that the impedance at z = 0 is unaffected
by the discontinuity at z = -d. When (3.15) and (3.20) are
satisfied, IBC's (3.12) and (3.13) are local boundary conditions
over the suface of the slot. If the sheet has more than one
slot, these IBC's can be applied at each slot provided (3.15)
and (3.23) are satisfied.

Results analogous to (3.15) - (3.26) can be easily obtained
for vertical slots and for slots with other orientations
provided the appropriate slot impedances can be determined.
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corresponding to fields decreasing in the -z direction have the

form
E2
. x < exp (jwzug/ng , (3.20)
3 H2
q Y
E2
¥ « exp (jwzu2/n2 . (3.21)
H2 y ¥
X

In this case, the real parts of n% and n% are negligible, and

n% = ijx(x,y,l,w),

(3.22)
2 = jwL (x,y,1,w),
ny Jw Y( 'Y )

where LX and Ly are the slot inductances. Relations (3.20) and
(3.21) then reduce to

E2

X x  exp (zu%/Lx) , (3.23)
H2

Y
E2

Y « exp (zu2/L.) . (3.24)
Hzx Yy Y

The latter show that the slot acts like a waveguide below cut-off

resulting in an exponential decay of the internal fields for

z < 0, The rates of decay depends primarily on the slot induc-
tances which depend in turn on the length and width of the slot
among other factors. As the length and width of the slot

decrease, Lx and Ly also decrease and the rate of decay increases.
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Since n% and n% can be defined in terms of effective permeabil-

ities and permittivities

n2 = /u% / e%

X
(3.16)
n2 = M2/ €2,
Yy Yy Yy
where u% ’ u% > Mg the relationship (3.15) implies
lu% E%I >> £
Ho fo (3.17)
2 £2
luy yl

which is completely analogous to (3.3).

In the slot, E2x ’ H2y , and E2y ' H2x satisfy separate

sets of homogeneous wave equations corresponding to n%

]
O

2
(wu2 / n% )* E2,

(3.18)

+ (wn2 / ng )2 H2y = 0,

y o4 2/ n2)*E2 = 0
(wuy / ny ) y ’

(3.19)

+  wpu2/ n2)*H2 = 0
uuy ny ) %

For airfilled slots with dimensions that are small compared
to the wavelength of EI, Hl1 (the usual situation when (3.15) is
satisfied),u% and u§ are real and the imaginary parts of n% and

n% are positive (inductive). Solutions to (3.18) and (3.19)
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And by substituting (4.20) into (4.21), we obtain the following
expressions for the fields inside the shield in terms of the
source fields incident at a point P(x,y,0) located in the i-th
slot:

i s i i i
- 2 n2 H1 (x,y,0) TE exp(-jwdu2 / n2) ,

X b4 X X X

E3, (x,y,-d)

i i i
H3 (x,y,-d) = 2 H1%(x,y,0) TH exp(-jwdu2 / n2) ,
Y Y X X X
i i i i (4.24)
E3_(x,y,-4d) = 2 n2 H1 (x,y,0) TE exp(-jwdu2 / n2) ,
y y X Yy y y
s i i i
H3_(x,y,-d) = 2 H1  (x,y,0) TH exp(-jwdu2 / n2) ,
X X
Y Y Y
where
i i
TE =2n3 / (n2 + n3) ,
X X
i i
TE = 2 n3 / (n2 + n3) ,
Yy Y
(4.25)
i i i
TH = 2 n2 / (n2 + n3) ,
X pYe X
i i i
TH = 2 n2 / (n2 + n3)
Yy Y Y

Equations (4.23) and (4.24) represent formal solutions to the
shielding problem for the generalized structure shown in figure
5. To obtain explicit solutions to particular problems, it 1is
necessary to specify the source S and the shielded volume M3
in sufficient detail so that Hli(x,y,O), Hli(x,y,O), and n3 can
be determined. 1In the following sections, we will obtain such

solutions for several combinations of sources and shields.
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5. ELECTROMAGNETIC SOURCE FIELDS

In this section, we will compute the fields generated by
several electromagnetic sources in a form suitable for wuse with
equations (4.23) and (4.24). The sources we will consider are
elementary (Hertzian) electric and magnetic dipoles and small
rectangular loop antennas. Our principal objective for each of
these sources is to ootain the magnetic fields tangent to the x,
y plane of the rectangular/cylindrical coordinate system in fig-
ure 5. These are the source fields Hl)s(( X,y,0) and Hl}s,(x,y,O)
that will be used in section 6 to obtain expressions for the

fields inside typical electromagnetic shields.

5.1 Elementary Electric and Magnetic Dipoles

The electromagnetic fields generated by elementary
electric and magnetic dipoles are, of course, well known, and in
most applications they require little discussion. A basic char-
acteristic of the dipole field is its family of equiphase surfac-
es 1in the form of concentric spheres centered on the dipole.
These surfaces reflect the fact that the field is expressed in
simplest form by reference to a spherical coordinate system with
the origin located at the dipole. This is, quite naturally, the
preferred means of representing these fields, and it is the only
representation found in most reference works. Here, however, we
must give up the simplicity of the dipole centered spherical
system in favor of a rectangular/cylindrical system with the
source located at an arbitrary point on the 2z axis as shown in
figure 6. This system is identical to the one in figure 5 ex-
cept that is has been rotated 90 degrees for purposes of clarity.
The dipole (electric and magnetic) is positioned on the 2z axis
at a distance D above the x,y plane with its moment paral-
lel to the x axis and pointing in the positive direction. With
this arrangement, the electric dipole can be used to approximate

a short, linear current element with a uniform current distribu-
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C(0,0,D)

P(x,y,z)

P = pi,
(m = mix) =
D !
—X DI
|
!
‘ | ,
-y ~ }
7/ ~ < A
S Y l@
A .
‘o "._‘
X=p COS @ S
y=p sin ¢ ‘e |
X p=(x2+y?) B

-2

Figure 6. Rectangular/cylindrical coordinate system with an

elementary electric (magnetic)dipole p (m)

ing in the x direction.
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tion parallel to the x,y plane. Similarly, the magnetic dipole

approximates a small, 1loop antenna with the plane of the loop

in the y,2z plane. 1In a situation where the x,y plane coincides
with the surface of the earth, these would be described as hori-

zontal dipoles.

We could obtain the dipole fields simply by transforming the
classical expressions from spherical to rectangular or cylindri-
it will be useful to obtain our results

cal coordinates; however,

directly from solutions to Maxwell's equations since we will need

to use the same method in the following section to obtain the
fields of a small, but finite, rectangular loop. Taking the
electric dipole first,we write Maxwell's equations in the form?%
VXE=-3%k_2_H,
_ 2 _ (5.1)
VXxH-=7j ko E / z, + JO ’
where Zo is the impedance of free space and kO is defined as
follows:
k_ = 2mf/u ¢ . (5.2)
o oo
The source term J, is given by
J,=1, p8(x) 8 (y) 8 (z-D) , (5.3)

where iX is a unit vector in the x direction, p is the cur-

rent moment (ampere-meter), and §( ) is the Dirac delta function.

Solutions to (5.1) can be written in terms of the Hertz vector
potential 7 as follows:
H = j ko Vxoxw/ Zo ’ (5.4)
E=vv-?+kgj, (5.5)
where T satisfies the vector Helmholtz equation
2 2 _ =
(Ve + ko) T = 3 zO Jo / ko . (5.6)

27 A. Banos, Jr., Dipole Radiation in the ' Presence of a Con-
duction Half-Space, Pergamon Press, Oxford, U.K.,p.4,(1966).
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Solutions to (5.6) can be written 1in terms of the vector
Green's function G as follows

T==-3p Zo G / ko . (5.7)

In rectangular coordinates, G is given by

~

G(x,y,2z) = i W(R) , (5.8)
where

W(R) = exp( - J kO R) / 47TR , (5.9)
and

R = /x? + y2 + (2-D)2 . (5.10)

In cylindrical coordinates, (5.8) becomes

G(o,0,2) = [ ipcosw) - i¢ sin(¢)] W(R) , (5.11)

where W(R) 1is again given by (5.9) and

R = /o2 + (z-D)2 . (5.12)

When (5.8) or'(S.ll) is inserted into (5.7) and the latter into
(5.4) and (5.5), the electric dipole fields can be computed by
straightforward (but lengthy) vector-differential operations.
Using (5.11), we obtain the following expressions for the fields
in the cylindrical coordinate system:

Electric Dipole Fields

E,= P 2, cosd [2(] k, R+ 1) + cos?6 ké R%2] W(R) / j kg R?
- , : - k2 2 : 2
E¢— P Z, sin¢ (J k R +1 ko R*) W(R) / 3 ko R® (5.13)

E,= P 2, cos¢ (3 + 3j k R - ké R?) sin6 cos® W(R) / j k., R?
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Hp = - p sin¢ (J kO R + 1) cos6 W(R)/R ,
H¢ = - p cosd (j ko R + 1) cos6 W(R)/R , (5.14)
H, = p sin¢ (j ko R + 1) sin® W(R)/R ,

where

2 = 2 sin?@ - cos?e ,

cosb (z - D)/R , (5.15)

sing = p/R

’

and W(R) and R are as defined previously. Rectangular field
components can be obtained from (5.13) and (5.14) using the

relations
Ex = Epcos¢ - E¢sin¢ : Hx = Hpcos¢ - H¢51n¢ '
(5.16)
E =E sin¢ + E,cos¢ ; H = H sin¢ + H , cos .
y = Epsine $°0s? y pS1n? $°0S?

When the electric dipole is replaced by a magnetic

dipole, Maxwell's equations can be written in the form

VxE= -3k, 2z, @+H) , 5.1
VxH= j kg E / Z,

where the source term ﬁo is given by
M =1 ms(x)é(y)s(z - D) , (5.18)

o X

and m is the loop magnetic moment (ampere-meter?). Solutions
to (5.17) can be constructed with the aid of the vector potential
in the same way that solutions to (5.1) were obtained.The result

in cylindrical coordinates is the following:

Magnetic Dipole Fields

Ep =m Zo sin¢ cosH ]ko (jkoR + 1) W(R) / R ,

Es

m Zo cos¢ cosf jko (jkoR + 1) W(R) / R , (5.19)
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E, = -m 2 sin¢ sin® ik, (jkOR + 1) W(R) / R,

H, = m cos$ [Q(jk_R + 1) + cos?6 kéRZ] W(R) / R? ,
Hy = m sing (Jk R + 1 - kng) W(R) / R? , (5.20)

H, = m cos¢ sind cos® (3 + 3jk_R - kéRz) W(R) / R? ,

where all quantities are as defined previously and the rectangu-

lar field components can again be computed from (5.16).

Equations (5.13), (5.14), (5.19),and (5.20) are the fields
of point dipole sources where the source strength has been
expressed in terms of the current moment p in the case of the
electric dipole and the loop magnetic moment m in the case of
the magnetic dipole. The usefulness of these expressions is due
to the fact that they can also be applied to finite dipole and
loop antennas when the antenna dimensions are much smaller than
the wavelength of the radiated field. To obtain the fields of a
dipole antenna of length 1o with current I, replace p in eg-
uations (5.13) and (5.14) with

p=1I1. (5.21)

And similarly, to obtain the fields of a loop antenna of cross
sectional area A and current I, replace m 1in equations
(5.19) and (5.20) with

m=1A . (5.22)

5.2 Rectangular Loop Antenna

Equations (5.13),(5.14), (5.19), and (5.20) - or their
spherical equivalents - are known to represent good approxima-
tions to the fields of dipole and loop antennas when the dimen-
sions of the antennas are small compared to the wavelength A
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of the radiated field

1O /A << ) = Co / £ (Co = vel. of light) , (5.23)

and also small compared to the distance between the source loca-

tion at C(0,0,D) and the observation point P(x,y,2)

1 VA << R=/%2 +y2 + (z - D)2 . (5.24)

On this basis, the fields presented in the preceding section can
be used to investigate a variety of practical problems some of
which will be discussed later in this report. However, in many
cases of interest, one or the other of relations (5.23) and
{(5.24) will not be satisfied, and, when this occurs, the validi-
ty of this approximation is .open to question. This is especial-
ly true in some shielding problems where (5.23) is easily satis-
fied but (5.24) is not.

In this section, we will consider one such case,namely, that
of a rectangular loop antenna of width a and length b where
a and b are arbitrary except for the restriction a,b << A . As
shown in figure 7, the loop lies in the y,z plane with its geo-
metric center C(0,0,D) located at a distance D above the x,y
plane. It consists of four filaments each of which carries a
current I flowing in directions indicated by the arrows. Our
objective is to compute the fields at an arbitrary observation

point P(x,y,z).

In this case (5.1) is the appropriate form of Maxwell's
equations. But now, the source term 30 consists of four terms
corresponding to the four sections of the loop as labeled in

the figqure:

J (0,y,2) = iy 3,00,y,0-a/2) + 1 3,00,b/2,2)

- iy J,(0,y,D+a/2) - iz J,(0,-b/2,z) . (5.25)
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Figure 7. A rectangular loop lying in the vy, z plane with its
geometric center C at the point (0,0,D). _
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The solution to the vector Helmholtz equation (5.6) for a source

30 (0,y,2) with finite dimensions is

T = K/jko/u"oeo' , (5.26)
where
_ '50(0.y',z‘) exp (-jk_R")
A = av’ . (5.27)
4MR”

\Y

In (5.27), R” is the distance between a point on the loop
P°(0,y",2z") and the observation point P(x,y,z)

R'=V/ x*+ (y-y)2 + (z-27)% , (5.28)

and the integration is taken over the volume containing the loop.
Substituting (5.25) into (5.27), we can write A as the sum of
four terms

A=A +A +A +A , (5.29)
1 2 3 4
where
_ n J(0,y",D-a/2) exp (~jk_R )
A =i 1 ! av |,
1 Y 4TR 1
1
v
1
_ R J(0,b/2,27) exp(—jkoR )
A =i 2 2_av |,
2 2 41TR2 2
v (5.30)
_ n J(0,y",D+a/2) exp (-jk_R )
A =-1i 3 i av_,
3 4 4TR 3
v 3
3
- ~ J(0,-b/2,2z7) exp(—jkoR )
A =-1i 2 *— av ,
N 2 4TR 4
V 4
4
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R = /'xz + (y - y')2 + (z -D + a/2)? ,

/ x? o+ (y b/2)% + (z - z7)°

o)
i

(5.31)

/x2+ (y-y)2+ (z-D-a/2)? ,

o)
n

R =7/ x4+ (y+b/2)2+ (z-27)°2

u ’
and V1' V2, Va, and V“ are the volumes occupied by the current

filaments. When these integrals have been evaluated, the fields
can be computed by substituting A into (5.26) and the 1latter

into (5.4) and (5.5).

The volume integrals in {(5.30) consist of an integration
over the cross sectional area of the filament and an integration
along its length. The integrals of J1' Jz, Ja, and J“ over the

cross section are simply the currents I1' Iz, I , and Ih in each

3
segment of the loop. However, (5.23) implies

I =1 =1 =1 =1
1 2 3 4

(5.32)

4
where I is independent of the loop coordinates y~ and z”~, and

exp(-]koRl)Eexp(—jkoRz)Eexp(—jkoRa)Eexp(—jkoRh)
=exp (-jk_R) , (5.33)

where

R = /'xz + y2 + (z - D)? ’ (5.34)

(the distance between the geometric center of the loop and P) is
also independent of y” and z° . Therefore, (5.30) reduces to
b/ 2

_ o dy”
A =1 I exp(-jk_R
1 Y p(-J ° ) 4TR

-b/2 1
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A =1 1
2 z

A =-1
3 1Y

A o=- 3
N Z

The integrals

A1 = ly Q
A2 = lz Q
A3 = 1y Q
A“ = 1z Q
where
Q:
and

K1 = x2 +

K2 x? +

D+a/2

dz”~
exp(—jkoR) —_—,
47R
D-a/?2 2
b/2
dy”
I exp(—jkoR) _—
~b/2 41rR3
D+a/2
dz”
I exp(—jkoR) —_—
D-a/2 4nRu

in (5.35) are elementary: hence,

Lt SUtL DAt e S bangh- da e Anst jegn e 4

(5.35)

b - 2y + 2 (K1-by+b2/4) ‘l
1n W;E [
-b - 2y + 2(Kl+by+b?/4) J
(2(D+a/2) - 2z + 2[K2 -2z (D+a/2) + (D+a/2)? "
1n ‘% ’
[2(D~a/2) - 2z + 2[K2 -2z(D-a/2) (D-a/2)? ]
b - 2 /40 %
. b -2y + 2(K3+by+b*/4) ’ (5.36)
b - 2y + 2(K3-by+b2/4)1§
[2(D-a/2) - 2z + 2[K4 -2z (D-a/2) (D-a/2)? 17
1n ’
_2(D+a/2) - 2z + 2[K4 -2z (D+a/2) (D+a/2)2]!'5

I exp(—jkOR)/4n ,

y2 4+ (z-D + a/2)% ,

(y - b/2)2% + 2% ,
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2

K3 = x> + y> + (z -D - a/2)? ,

K4 = x2 + (y + b/2)% + 2?

Nhen (5.26) is substituted into (5.4) and (5.5) using (5.36),
{5.37), and (5.38), a lengthy calculation is required to deter-
mine the loop fields. This effort can be mitigated somewhat by
using cylindrical coordinates as in the preceding section. How-
ever, even when expressed in cylindrical coordinates, the fields
are such complicated functions that we cannot give the complete
set of components here. Instead, we limit ourselves to the
components of principal interest in this study, that is, Hp and
H . These are given by the following:

¢
I cosy exp(-jk Xx)
H, = Q. [bs - &€ - jk(z - D)Y/R| ,
am (5.39)
I exp(—jkOR)
H¢ = [sin¢ (£ - jk_(z-D)Y/R] - ¢ + jkopv/R] ’
4T ©
where
1 1
B = - +
Bl1[2(D+a/2) - 2z + 2B1] B2[2(D-a/2) - 2z + 2B2]
1 1
- + ’

B3[2(D+a/2) - 2z + 283} B4[2(D-a/2) - 2z + 2BR4]

2(z-D+a/2) 2(z-D+a/2) 2(z-D~-a/2)
) £l (b=-2y+2£1) £2(~b-2y+2£2) £3 (b-2y+2£3)
2(z-D-a/2)
+

£4(-b-2y+2£4)
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2p - b sind 2p - b sin¢
C = -
B1[2(D+a/2) - 2z + 281] B2[2(D-a/2) - 2z + 2B2]
2p + b sin¢ 2p + b sin¢
- + ’
g3[2(D+a/2) - 2z + 283] B4[2(D-a/2) - 2z + 2p4]
(b - 2y + 2E1][-b - 2y + 2&4]
Y o= 1n '
[-b - 2y + 2£2]([b - 2y + 2£3]
[2(D+a/2) - 2z + 2B81][2(D-a/2) - 2z + 284)
v = 1n ’
[2(D-a/2) - 2z + 282][2(D+a/2) - 2z + 283]
Rl = / K3 - 2z(D+a/2) + (D+a/2)? ,
g2 = / K3 - 2z(D-a/2) + (D-a/2)2 |,
83 = / K4 - 2z(D+a/2) + (D+a/2)? ,
84 = / K4 - 2z(D-a/2) + (D-a/2)% |,
£1 = /K1 - by + b2/4
£2 = /K1 + by + b%/4 ,
€3 = /K2 - by + b%/4 ,
o
t4 = /K2 + by + b2/4 iy
S
ST
K ) )
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wever, in certain special cases, useful approximations can be
tained. For example, in the case of an air filled slot, u% =
= Mg and n2 can be approximated by the impedance of a center
d slot antenna? The resulting expression is quite complicated
d will not be reproduced here. However, when (6.20) is satis-

ed, this expression reduces to (3.22)
n% = ijy(0,0,l,w) = ijs ’ (6.25)

ere Ls’ the slot inductance, is a function of 1 and w. With
ese approximations, the transmitted fields from the magnetic
pole (6.23) become

i

. s
E3y(0,0,-d) 2 ijS Hlx(0,0,0) TE exp(—duo/Ls) ’

(6.26)
H3_(0,0,-d) = 2 Hli(0,0,0) TH exp(-du_/L) ,
ere
TE = 2 n3/(ijS + n3) ,
(6.27)
TH =

2 ijs/(ijs + n3) .

For slots ranging in length from .01 to 1 meter, LS can be
mputed with the aid of figure 7 in Monroe’ by dividing the

ot impedance by 2nf. This gives
L, = 3.2x10"®H for 1 = .5m and w = .0016 m , (6.28)

d Ls can be obtained for slots of other dimensions by interpo-

lating between the curves in the figure.

The reader can verify that expressions for the fields trans-
tted by the vertical slot shown in figure 4(b) when it is ex-

sed to the x directed electric dipole can be obtained from

R. L. Monroe, EMP Shielding Effectiveness and MIL-STD 285,
Harry Diamond Laboratories, HDL-TR-1636 (July, 1973).
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l (6.16) evaluated at P~(0,0,-d). Although a slot will in gen-
11 transmit four tangential field components as indicated by
.24) for each source, there will only be two non-zero compo-
1its at P“(0,0,-d) for each dipole source. 1In the case of the
sctric dipole, Hli(0,0,0) = 0; hence, E3_(0,0,-d) = H3 (0,0,-d)
), and (4.24) reduces to the following:

E3x(0,0,—d)

[}

S .
-2 T)>2< Hly(ololo) T>E{ eXP(-deu}%/n)%) ’
(6.21)

H3(0,0,-d) 2 H12(0,0,0) T§ exp(-judu2/n2) ,

ere HI;(0,0,0) is obtained from (6.4), n3 is given by (6.15),

]

TE 2 n3/(n§ + n3) ,

(6.22)

Tg 2 ng/(n% + n3) ,

d we have dropped the index 1 since we are considering a
ngle slot.

Similarly, in the case of the magnetic dipole, H1° (0 0,0) =
J0,0,—d) = H3y(0,0,-d) = 0, and (4.24) reduces to

]

E3(0,0,-d) = 21 Hli(0,0,0) TE exp(-judi2/ n2) o

H3_(0,0,-d) = 2 Hli(0,0,0) T exp (-jwdug/ n2)

ere Hli(0,0,0) is obtained from (6.5), n3 isgivenby (6.16),and

TE
b

R

To compute the fields transmitted by the slot using egqua-

2 ﬂ3/(n2 + T]3) '
Y (6.24)

2 n2/(n2 + n3 .
ny/( 8 n3)

ons (6.21) and (6.23), the remaining parameters u%, u%, n%, and
' must be determined. 1In general this is a difficult task;
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Aind for magnetic dipoles (5.19) and (5.20) give

jk R (jk_R + 1)
n3 = z o o . (6.16)
O 1k R + 1 - k2R?
o] (o]

where

R=+v/p2 + (d+D)? . (6.17)
1f

d << D (6.18)
then,

R=/p2+D2,

and

o S S = - S S
n3 = Elp(o,¢.0)/H1¢(o,¢.0) E1¢(p,¢,0)/Hlp(p,¢,0)

= nl . (6.19)

That is, when the thickness of the sheet is much smaller than
the distance between the source and the sheet, N3 is approxi-
mately equal to the wave impedance of the source field in M1l at

z = 0.

6.3 Infinite Plane Sheet With a Rectangular Slot

If the sheet described in the preceding section is pen-
etrated by a narrow rectangular slot as shown in figures 4(a)

and 11, where
w < d <<l << A, (6.20)

then the field transmitted into M3 at P“(0,0,-d) is given by

equations (4.24) and (4.25). For sources consisting of electric
and magnetic dipoles oriented in the x direction, the incident
source fields at P(0,0,0) are H13(0,0,0) = H1§(o,o,0) and H1;(0,
0,0) = H1$

¢
(6.4) and (6.5) at P(0,0,0) .Similarly, "3 is again given by (6.15)

(0,0,0). These fields can be determined by evaluating
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As in the preceding section, we consider dipole sources where
le and HI: are given by (6.4) and (6.5). To completely speci-
fy the fields entering M3 at P“(p,¢,-d), n3, the wave impedance
of the field looking into M3 at P"(p,¢,-d) in the -z direction
must be determined. If M3 like M1 is free space, then the fields
in M3 must satisfy the same radiation condition for z —» - «
that the source field satisfies when the sheet is removed. Fur-
thermore, the wave impedance of the fields in M3 must approach
the same limit (Zo= 120" ohms) as that of the source field when
z —> =~ o, It follows that the wave impedance at given point
in M3 will be approximately equal to the wave impedance of the
source field at that point and, in particular, that n3 is approx-
imately equal to the impedance of the source field at z = -d
when the sheet is removed. That is,

S

n3 = Es(o,¢,-d)/H¢(p,¢,-d) , (6.11)
or
-n3 = Ez(o,¢,-d)/H§(p,¢,-d). (6.12)

For a given source, (6.11) and (6.12) do not give consistent
expressions for n3 at all points on the interface z = -d4. How-

ever, at points in the vicinity of the 2z axis where
sinb = 0 and cosf =1 , (6.13)

the two expressions are consistent for dipole sources. That is,
(6.13) implies

n3 = Ej(o,¢,—d)/nj(o.¢,-d) = - E$‘0'¢"d’/“§‘°'¢"d’- (6.14)

For electric dipoles, (5.13) and (5.14) give

: 22
Lmﬁ-fl—l%R] (6.15)
bkoR (jkoR + ld

n3 = Z0
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The reader can verify that (6.1) with H1§(Q,¢,0) and le(p,¢,0)
given by (6.4) and (6.5) is in good agreement with corresponding
expressions obtained by Bannister ® using the quasi-static
approximation for horizontal electric and magnetic dipoles above
a conducting half-space. However, unlike the quasi-static

approximation, equation (6.1) is not limited by the assumption
that the distance between the source and the observation point

is small compared to the wavelength of the field in free space
(A).

6.2 Infinite Plane Sheet of Uniform Thickness

By keeping d finite and letting W,H > as in

the preceding section, we transform the generalized shield into
an infinite plane sheet of uniform thickness (figure 3). The
fields at a point P“(p,¢,-d) on the inside surface of the sheet
(the surface farther away from the source) are given by (4.23).
In cylindrical coordinates, (4.23) becomes

E3 (p,0,-d) = - 2 n2 H15(p,4,0) TE exp(~v2d) ,

P ¢ . (6.8)
E3,(p,¢,~d) = 2 n2 H1§(0,¢,0) TE exp(-v2d) ,
H3 (p,6,-d) = 2 H1(p,4,0) TH exp(-v2d) ,

P P (6.9)

H3  (pr¢,-d) = 2 H1:<p.¢,0) TH exp(-v2d) ,
where n2 and Y2 are given by (6.2) and (6.3) and TE and TH are

TE =2 n3/(n2 + n3) ,
(6.10)

TH =2 n2/(n2 + n3) ,

29 R. R. Bannister, IEEE Trans. Antennas and Propagation,
AP-15 (1967), 618.
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H2 (p,0,2) = 2 le(p.¢.0) exp (y2z) ,
H2, (0,9,2) = 2 Hlj(p,¢,0) exp (y2z) ,
where
n2 = Yu2/e2 = /j2ﬂfu2/02 for o2 >> 2nfe” , (6.2)
Y2 =jw/u2e2 = /3j2mfu202 for o2 >> 2nfe” , (6.3)

and €° and 02 are the real part of €2 and the conductivity
respectively (equation (3.4)). In (6.1), the source terms le
and le are determined by evaluating (5.14) and (5.20) at z=0.

For the case of an electric dipole pointing in the x direction

we obtain

le(p,¢,0) - p siné (jk_R + 1) cos8 W(R)/R ,

(6.4)

H1§(p,¢,0) - p cos$ (jk_R + 1) cosé W(R)/R ,

and for the case of a magnetic dipole with its moment pointing

in the x direction

Hli(p,¢,0) = m cosp [RFk R + 1) + cos?6k2R’] W(R)/R® ,

(6.5)

H1:(p,¢,0) = m sin$ (jk_R + 1 - kZR?) W(R)/R® ,
where

Q = 2 sin?8 - cos?8 ,
cos6 = - D/R , ) (6.6)
sinf = p/R ,
W(R) = exp(—jkoR)/4wR '

(6.7)
R=7/p% +D? .
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6. PROPAGATION OF ELECTROMAGNETIC FIELDS THROUGH STRUCTURES
COMPOSED OF GOOD CONDUCTORS

With the results of sections 4 and 5, we can easily obtain
expressions for the fields penetrating any structure derivable
from the generalized shield in figure 5 when that structure is
exposed to electric and magnetic dipoles, small rectangular
loops, and any other source whose fields tangent to the surface
of the structure are known. Since the number of combinations
of sources and structures that can be treated in this way is
quite large, we will not attempt to discuss them all here.
Instead, we will limit ourselves to several that are related to

to classical electromagnetic propagation and shielding problems.

6.1 Uniform Half-Space

By eliminating all sheets except ES1 in figure 5, by
eliminating all slots in ES1, and by letting H,W,d — », we
can transform the generalized shield M2 into a uniform half-
space with a plane interface separating it from another half-
space M1 (figure 2). 1If M1l is free space with elementary elec-
tric and magnetic dipoles as described in section 5.1, then this
combination of source and structure is the one considered by
Sommerfeld?® and his followers?” who used classical analytical
techniques to obtain approximate solutions for the fields in M2,

Our solution, based on the impedance boundary condition, is

given by (4.19). Since the half-space is isotropic, (4.19) can
be written directly in terms of cylindrical coordinates as
follows:
E2 (p,¢,2) = - 2 N2 le(p,¢,0) exp (Y2z) , 6.1)
E2,(0,0,2) = 2 M2 H1S(0,6,0) exp (Y2z) , )

27 A. Banos, Jr. Dipole Radiation in the Presence of a Conduc-

ting Half-Space, Pergamon Press, Oxford, U.K., (1966).
28 A. Sommerfeld, Ann. Physik 28,665, (1909).
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the center position y = 0 that is not present in figure 8(b).
This asymmetry is rather slight for the loop height chosen, but
it would certainly become much more pronounced if h were sig-

nificantly reduced.

The effect of increasing D on IHX| in the x,y plane 1is very
striking in this case. The figure shows that the field at y = 0

is 8 times larger when D = 18 in. than it is when D = 36 in.This

implies that IHxl varies like z ° along the z axis. The figure
also shows that the very sharp peak occuring at y = 0 for D = 18
in. is eliminated when the loop is moved to the point where D =
36 in. And, similar results are obtained when [HXI is plotted

along the x axis. The relatively small variation in |H£4along
the x and y axes when D = 36 in. indicates that a virtually uni-
form field distribution over a sizable surface area (at least

7 X 7 ft.) can be achieved in the near field of a small loop an-

tenna - contrary to what one might expect.




i, Jnd ot 2 e Satt St It St it it P L A

Assumptions B
I « exp(j2uft) — 3
1.
and ;‘ D2 >—2
1 =Dy —>|_
A= Co/f > a | I L
N A - )
Parameter Values z Aﬁ- Y ‘E | -z
a=Db=10.6 in. -a o — 1
h=3.5ft. —~
D1= 18- ino h f— e 2
|| = 1 anmp. ' \ | ——3

7/7//////77////7//////////7/////////77

R e
% |®-D=D1=18in. ® ®
E [ (™-D=D2=36in. f=10°MHz
P '
Q -
£ 4 |
8
< B
S
P23 - @
=2 |- L 2
Z
1 [
) | | | L || ] o 4‘}
I P T D e . .
-3 -2 -1 0 1 2 3
y axis (ft)

Figure 10. Magnetic field of a small, square loop.

(a)A small, square loop carrying a uniform current
I centered at (0,0,Di1) and (0,0,D2) at a height
h above a ground plane.

(b)A plot of IHXI along the y axis for the two
loop positionis shown in (a).
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as the observation point moves to more distant points on the vy
axis. Thus the calculations demonstrate that the use of the di-
pole approximation for small antennas need not be limited to sit-
uations where the distance to the observation point is large

compared to the size of the antenna.

Figure 8(c) shows how the loop and dipole fields at the point
X =y =2 = 0 vary as functions of the source frequency £f. Here
IHX| is seen to be virtually independent of frequency for both
loop and dipole fields over the range 0 to 10 MHz. Between 10
and 100 MHz, the loop field begins to increase linearly with £,
while the dipole field shows a slight dip.However,above 100 MHz
the dipole field increases rapidly and overtakes loop field which
maintains a linear variation up to the resonant frequency of the
loop {280 MHz) where assumption (5.23) breaks down. In view of
these results, use of the dipole approximation would appear to be
inadvisable at frequencies greater than 10 MHz On the other hand,
the loop equations appear to give reasonable results up to 100 MHz

is this case.

5.3.2 Effect of a Perfectly Conducting Ground Plane

Parallel to the x,y Plane on Magnetic Fields

in the x,v Plane for Two Loop Positions

By using equation (5.39) to compute the magnetic
fields from a loop and its image as shown in figure 9 and by ad-
ding the loop and image fields at an observation point P(x,y,z),
the effect of a ground plane parallel to the x,y plane on the
loop field can be computed.This has been done for the arrangement
shown in figure 10(a) where the same current loop used in the
preceding section is now located with its center at a height of
3.5 ft. above a ground plane. The results are shown in figure
10(b) for two loop positions D = 18 in. and D = 36 in. where once
again we plot the magnitude of Hy along the y axis. The effect

of the ground plane is to introduce an asymmetry with respect to
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and K1, K2, K3, and K4 are as defined previously in (5.38). With
(5.39), the rectangular components Hx and Hy can be computed
with (5.16) as in the case of the dipole fields.

5.3 Sample Source Field Calculations for Magnetic Dipoles

and Square Loops

5.3.1 Comparison of Loop and Dipole Fields

With the equations given in the preceding sec-
tions, we can investigate the question of how well an elementary
magnetic dipole approximates a small loop antenna when the dis-
tance between the antenna and the observation point is not large
compared to the dimensions of the antenna. We will do this for
the arrangement shown in figure 8(a). 1In the figure, the symbol

A indicates the position of a magnetic dipole on the z axis
at a distance D = 18 inches from the x,y plane. Centered on the

same position is a square loop antenna 10.6 inches on a side.The

loop carries a uniform current I with I| = 1 amp, and the
magnetic dipole moment m is defined by m = |[I|a?=112 amp-in?
= .072 amp-m? in accordance with (5.22). With this arrangement,
the dominate magnetic field component in the x,y plane is H,
which can be computed with equations (5.20) and (5.16) for the
dipole and equations (5.39) and (5.16) for the loop. Figures 8 (b)
and 8(c) show the results of one set of calculations using these
equations. Figure 8(b) is a plot of IHXI along the y axis
where the loop and dipole fields are indicated by @ and A

respectively. These curves show that the magnetic dipole 1is a
surprisingly good approximation to the loop even when the distance
to the observation point is approximately equal to the dimensions
of the loop. For these calculations there is a maximum differ-
ence between the two fields of 12%. This occurs at y = 0, and,

as one would expect, the difference between the fields decreases
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(6.26) by making the following substitutions S
E3x(0,0,—d) —_— E3y(0,0,—d) , L
H3_(0,0,-d) —> H3,(0,0,-) , (6.29) SN
115(0,0,0) > H15(0,0,0) 'y
y ’ ’ X 1 14 * .
where HI;(0,0,0) is the source field from the electric dipole [ZQ
(6.4). Since the maximum response of a slot in a plane is always L
obtained when the incident magnetic field is aligned parallel to o
its longest dimension, equation (6.26) will always give the
- largest field that a slot of a given size can transmit when it
F is exposed to a magnetic dipole. Similarly, the equations
ﬁ derived from (6.26) using (6.29) will always give the largest e

field that a slot of a given size can transmit when it is exposed

to an electric dipole. -

6.4 Single Walled Continuous Enclosure in the Form of a

Rectangular Parallelepiped N

If a sixth plane sheet is added to the generalized :f
shield (figure 5) to form the continuous (no slots) enclosure {:3
shown in fiqure 12, then the fields reaching an interior point ﬁi*
P (x,y,-d) from the source S are given by (4.22) and (4.23) e
where n2 is the intrinsic impedance of the material comprising !t.?
the enclosure (6.2) and n3 is the impedance at z = -d looking -ff€
into M3. As in the preceding examples, it is necessary to spec- ;{}
ify H1_(x.y,0) and Hli(x,y,(; (or H1§(p,¢>,0) and le(p,d),O)) '
as well : 5 n3 in order to give explicit meaning to these formal SRR
expressions. ;€}
For electric and magnetic dipoles, the source fields are ;;J‘
again obtained by evaluating (6.4) and (6.5). Similarly, for a N
rectangular loop antenna, the source fields would be obtained lif:

..
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by evaluating (5.39) at z = 0.In this way,the formal expressions
can be used to represent the transmitted field of any source

l whose magnetic field components tangent to ES1 are known.

To evaluate n3, we first note that M3 now occupies a finite
volume rather than a half-space as in the case of the infinite

plane sheet considered in the preceding sections. Consequently,

T

the fields in M3 will not satisfy a radiation condition like the
one satisfied by the source field in Ml; and, in general,n3 will
be unrelated to the wave impedance of the source field. 1In this
case, the structure of the fields in M3 will be determined prim-
arily by the geometry of the enclosure and by its size relative

to the wavelength of the source field (A). Since the thin walled
parallelepiped in figure 12 is equivalent to a section of rectan-

Rt ok o o) ——‘"—'f_vA— -y

gular waveguide closed at both ends by good conductors, n3 will
be determined by one or more of the wavequide modes that this

structure can support. There are, of course, a doubly infinite
number of such modes so that determining n3 in the general case
is a formidable problem. Fortunately, in many cases of interest,
there is a single dominant mode that can account very well for
the principal features of the fields in M3. This is the TEj,

mode ® which has the following important properties:

* The cutoff frequency is independent of one of the dimen-

sions of the cross section (W or H).

* The polarization of the field is definitely fixed: the
electric field passing from top to bottom of M3 as shown
in figure 12(a) if E3y is the dominant electric field
component at z = - d or from side to side if E3X is the

dominant field component at z = - 4.

30 S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Vaves

in Communications Electronics, John Wiley and Sons, Inc.,
New York, p. 425, (1965).
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* For a given frequency and H to W ratio, attenuation due to
"copper” losses in the walls is less for the TE,y mode
than for other modes.

Using these and other properties of the TE;y mode, we can con-
struct an appropriate expression for n3 that can be used in (4.22)
and (4.23).

To illustrate this process, we consider the case where a
source such as the x directed magnetic dipole or the rectangu-
lar loop antenna produces a magnetic field incident on ES1 with
a dominant Hli component as shown in figure 8. In this case,the
dominant electric field component at z = - d will be E3y. That
is, the source will couple to the vertically polarized TE,, mode
in M3. If we now adopt the usual assumption in waveguide theory
that wall losses can be ignored in first order approximations
when the wavequide is composed of a good conductor (metal), then
the characteristic impedance 2 and propagation constant Y3

TE
of the vertically polarized TE;, mode are given by the following: ¥

ZTE = ijO/wcG , (6.30)

Y3 = kcG , (6.31)
where

¢ =Y 1+ (ju/w) . (6.32)

we = 21rfc , (6.33)

fc = CO/ZW ’ (6.34)

kc = 21ch/Co ' (6.35)

30 S. Ramo, J. R. Whinnery, T. Van Duzer,Fields and Waves in

Communications Electronics, John Wiley and Sons, Inc.,
New York, pages 409 and 425, (1965).
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With these expressions, the impedance at z = - d looking into M3

can be approximated as follows:

n3 = ZTE tanh(y3 L) , (6.36)

where (6.36) assumes a perfectly reflecting plane at z = -L -a¥%
For frequencies below the cutoff frequency (f < ch Y3 is reel

and positive, and Z and n3 are both imaginary (inductive). In

TE
this case, the fields in M3 attenuate exponentially as one moves
away from ES1l. When f > fC , Y3 is imaginary,and ZTE is real.

The fields then propagate into M3 without attenuation and are

reflected between ES1 and ES6 to form standing waves. At much
—_— =

ZTE ZO 1207 (ohms) . By

regarding Y3 as a complex variable and using the hyperbolic

higher frequencies where f >> fC ’

tangent in (6.36) to represent reflections of the complex field,
we are able to write n3 as a single expression over the entire
range of frequencies. This will prove to be very convenient in

later sections when we consider transient fields.

With n2 given by (6.2) and n3 given by (6.36), we have the
following expressions from (4.22) and (4.23) for the vertically
polarized TElofield at P"(x,y,-d) due to a source that produces
a dominant magnetic field component Hli(x,y,O) at P(x,y,0):

E3_(x,y,~d) = 212 Hli(x,y,O) TE exp(-Y2 d) ,
y (6.37)
H3_(x,y,-d) = 2 Hl}s((x,y,O) TH exp(-y2 4) ,
where
TE = 2 n3/(n2 + n3) ,

(6.38)
TH

2 n2/(n2 + n3) ’

30 S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in

Communications Electronics, John Wiley and Sons, Inc.,
New York, Pages 46-48, (1965).
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and

vy2 = jw ¥ pw2e2 = V¥V jw w202 , (6.39)

The reader can easily verify that the horizontally polarized
TElomode fields at P“(x,y,~d) due to a source generating a domi-
nant HI;(x,y,O) component over the surface of ES1 can be obtain-

ed from (6.37) with the following transformation:
E3 (x,y,-9) — E3y(x,y,-d) ’
H3 (x,y,-d) —> H3_(x,y,-d) ,

Y (6.40)

H1§(x,y,0) —_ Hli(x,y,O) ,

Co/2H —> £ (See equation (6.4))

For example, this transformation could be used to obtain the
horizontally polarized TE10 fields at P*(x,y,-d) due to an x
directed electric dipole located close to ES1 where HI;(x,y,O)

is computed from (5.14).

6.5 Single Walled Parallelepiped with a Narrow Rectangul-

ar Slot in One Side

When a continuous single walled parallelepiped is
rendered discontinuous by a narrow rectangular slot, the fields
that penetrate the slot will share some of the properties of the
fields described in the two preceding sections. 1In the case of
an enclosure with a horizontal slot as shown in figure 13, the
field at P”(0,0,-d) due to a source field H13(0,0,0) at P(0,0,0)
will couple to the vertically polarized TE10 mode. Equations
(4.24) and (4.25) then give

. S
E3y(0,0,-d) 2 ijs Hlx(0,0,0) TE exp(-uod/Ls) '

(6.41)

3 (0,0,-d) = 2 Hli(0,0,0) TH exp (-u_d/LJ) ,
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Figure 13. A source S illuminating an enclosure in the form of
a rectangular parallelepiped with a slot in one face.
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for an air filled slot where LS is the slot inductance (6.25),

TE

n

2 Y'l3/(ijs + n3) v

(6.42)
TH

2 jwL / (JwL_ + n3)

and n3 is given by (6.36).

As with the expressions obtained in preceding sections,
equations (6.41) can be easily adapted to other related struc-

tures such as a vertical slot in an otherwise continuous par-
allelepiped.
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7. SHIELDING EFFECTIVENESS OF METALLIC STRUCTURES

7.1 Definitions of Shielding Effectiveness

There are two definitions of shielding effectiveness
in current use which attempt to provide a figure of merit for
the shielding properties of metallic structures. One of these,
the theoretical definition, derives from Schelkunoff's shield-
ing theory as described in section 2. The other, which we can
call the experimental definition, has been promulgated in many
public and private shielding standards such as MIL-STD-285! and
IEEE 299.°! As implied by these names, the first is used primar-
ily 1in theoretical investigations; while the second is used in
attempts to measure the effectiveness of electromagnetic shields

in the laboratory and in the field.

Both definitions express the shielding effectiveness (SE)
in terms of the ratio of the magnitude of an unshielded field
component to the magnitude of the same field component when the
shield is in place, and both definitions express the ratio of
unshielded to shielded field components in terms of the same
logarithmic scale. However, the definitions differ in the way
the shielded and unshielded field components are specified, and
the difference will contribute to the discrepancies between
shielding measurements and theory noted in section 2. The dif-
ference between the definitions is illustrated in figure 14
where (a) and (b) describe the fields used in the theoretical

definition and (c) and (d) refer to the experimental definition.

1 Anonymous, MIL-STD-285 "Method of Attenuation Measurements
for Enclosures, Electromagnetic Shielding, for Electronic
Test Purposes, Dept. of Defense, (25 June 1956).

31 BAnonymous, Proposed IEEE Recommended Practice for Measure-
ment of Shielding Effectiveness of High Performance Shield-
ing Enclosures, IEEE 299, IEEE Inc., NY, NY, (June 1969).
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Theoretical definition: (a) - (b)
Experimental definition:(c) - (d)
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n (a), a source S located at a distance D from the surface
iroduces a shielded electric field component E3p(0,0,—d) on the
nside surface of the shield, and in (b) the same source at the
;jame location produces an unshielded electric field component

:15(0,0,0) at P(0,0,0) when the shield is removed. The theoret-~

tcal definition of the shielding effectiveness against electric

‘ields is then
SE_(E) = 2010g[|E1§(O,O,0)/E3p(0,0,-d)|] , (7.1)

where p denotes one of two orthogonal field components in a
plane perpendicular to the 2z axis. Similarly, the shielding

effectiveness of the same structure against magnetic fields from

S is
SE. (H) = 2010g(|#15(0,0,0) /H3_(0,0,-a) |1 , (7.2)

where g, like ©p, denotes one of the orthogonal components
transverse to 2z. In figure 14(c) and (d), the same source and
shield placed at the same positions relative to the 2z axis
produces a shielded electric field component E3p(0,0,—D-d) at
P°(0,0,-D-d) and an unshielded component ElS(0,0,-D—d) at the
same point when the shield is removed. With these fields, the

experimental definition of shielding effectiveness is written
SEz(E) = 201og[131;(0,0,-D-d)/E3p(o,o,-n-d)|] . (7.3)
And, for magnetic fields,
SEC (H) = ZOlog[IHIZ(0,0,—D-d)/H3q(0,0,—D-d)]] . (7.4)

Since El (0,0,0) # El (0,0,-D-d) and E3 (0,0,-4) #

E3 (0,0,-D- d), it is clear that, in general, SES(E) # SE:(E).
And by the same token, SE (H) # SE (H) . Thus even under ideal
circumstances, the two deflnltlons w1ll not give identical
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ults. The question then arises as to how much of a discrep-
y is built into these definitions. Most investigators would
bably say that the discrepancy is negligible (<3 dB) basing
ir argument on the fact that the experimental definition as
is usually applied requires D to be relatively small. For
mple, MIL-STD-285 and IEEE 299 both describe shielding effec-
eness measurements using (7.4) in which the source and the
1d sensor are coplanar circular loops 12 inches in diameter
ated symmetrically on either side of the shield with their
ters at a distance D = 18 inches from the wall., When D is
s small, it can be argued that E3_ will change at very nearly
same rate with respecF to 2z that Elg changes so that

ir ratio will be virtually constant near the wall. This

lies:
t - e
SES(E) = SES(E) '
(7.5)
t - e
SES(H) = SES(H) .

ortunately, this argument is not always valid so that in some
es (7.5) is open to question. For example, it was pointed

in the preceding section that H3p inside an enclosure decreas-
exponentially with -z as the observation point moves away

m ES1 when the source frequency is below the cutoff frequency,

it was shown in section 5.2 that the source field H1° varies
e 1/z® at points close to the source. Hence, H1§’/H3p could
y by a significant amount at points close to ES1 in this
e. It was also pointed out that standing waves could occur
an enclosure at frequencies above cutoff. H3p may then
rease at points in the interior leading to a much smaller
ue of shielding effectiveness as determined using the experi-
tal definition compared to that obtained with the theoretical

inition. For measurements made in accordance with MIL-STD-285
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IEEE 299, the difference due to standing waves would be more
n 18 dB.

In the following, we will accept (7.5) as a working approxi-
ion while recognizing that in some cases significant differ-
‘es between the theoretical and experimental shielding effec-
eness of a given structure may occur solely because of the way
'se quantities are defined. To eliminate such differences, it
t11d be necessary to change one or the other of these defini-
ms. On the theoretical side, this could be done by extrapol-
.ng the fields from z = -d out to 2z = -D-d and applying
: experimental definition to the computed fields. Conversely,
the experimental side, one could measure the fieldsat =z = -d
i1 apply the theoretical definition to the measured fields.

:re are, of course, problems associated with both procedures,
: a discussion of these problems is beyond the scope of the

2sent report.

7.2 Shielding Effectiveness of Plane Sheets

In this section, we will obtain theoretical expressions
r the shielding effectiveness of uniform and slotted sheets using
e transmitted fields given in Sections 6.2 and 6.3. These

pressions will show that

SEt
]

1

set(g) = set@m) , (7.6)
S S

ere SEE is formally identical to Schelkunoff's Shielding Form-
a (2.16).

7.2.1 Uniform Sheets

The shielding effectiveness of a uniform sheet
n be obtained by evaluating equations (6.8) and (6.9) at
(0,0,-d) and substituting these expressions into (7.1) and L
.2). Starting with E3p(0,0,—d) = EBX(O,O,—d) and using (6.8)

et
TSI S S S
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7.1), we obtain

| 2n2 H1§(0,0,0) TE exp(-y2 d)

SE:(E) = 20log ‘ S ; (7.7)
E1;(0,0,0)

E = 2n3/{(n2 + n3) ,

1§(o,o,0)/H1§(o,o,0) = nl by definition and n3 = nl by

). Hence,TE = 2n1/(n2 + nl1), and (7.7) can be rewritten as

WS

N 4n2 exp(-v2 4)
SES (E) = 20log ’
n2 + nl

(7.8)

‘ting the ratio and using (6.3) to replace Y2, we obtain
L
sz(E) = 20log[| (12 + nl)/4n2|] + 8.686(mu202 f)*d

in most cases of interest, the magnitude of the wave imped-
of the source field at P(0,0,0) is much greater than the
nsic impedance of M2, that is, |nl|>>|n2|. Consequently,

') reduces to its final form
LE;(E) = 20log(|n1 / 4n2|) + 8.686(mp202 f)%d ’ (7.9)

., with a trivial change in notation, is seaen to be identi-
0(2.16) for c = 4.

f we now start with H3p(0,0,—d) = HBX(O,O,—d) and use (6.9)
'.2), we can easily show that SEE(H) = SEE(E) in this case.
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That is,
N 2 H1§(o,o,0) TH exp(-v2 d)
—SES(H) = 20log S
H12(0,0,0)
= 20log (|2 TH exp(-y2 d)|) , (7.10)
where

TH = 2n2/(n2 + n3) .
But again n3 = nl; hence (7.10) becomes

4n2 exp(-v2 4)

-SE_ (H) = 20log
nl + n2

which is identical to (7.8). Therefore, SE:(E) = SE:(H).

The reader can verify that the same result is obtained if
one uses E3¢(0,0,-d) = E3y(0,0,-d) in (7.1) or H3¢(0,0,-d) =
H3y(0,0,-d) in (7.2).

7.2.2 Slotted Sheets

The shielding effectiveness of a sheet with a
narrow rectangular slot is formally identical to (7.9); however,
because of the anisotrophy of this structure, the source and its
orientation with respect to the slot must be specified. Thus,the
shielding effectiveness of a "horizontal" slot (Figure 4(a))
against the fields of an x directed electric dipole is obtain-
ed by using (6.21) in (7.1) and (7.2). Following the same pro-
cedure as in the preceding section, we obtain

t
SEED(—)

t oot
SEgy (E) = SEp (H)

(7.11)

20log [|nl / 4n2|] + 8.686 |u2/n2|a ,
X X X
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where ED identifies the electric dipole source, and (=) indicates
that the dipole is oriented parallel to the slot.

Similarly, the shielding effectiveness of the same slot
against the fields of an x directed magnetic dipole is obtain-
ed using (6.23) in (7.1) and (7.2). The result is

t t _ t
SEMD(—) SEMD(E) = SEMD(H)

20log[|nl / 4n2|1 + 8.686|u2/n2|d ,
y Yy y

where MD refers to the source and (=) again indicates that the

dipole is oriented parallel to the slot. For an air filled slot
_ o s t

where u§ = ¥, and n§ Jst ' SEMD( ) reduces to

t

SEyp (=) = 20log{|nl|/ 4uLg] + 8.686 u d/L_ , (7.13)

where Ls is the slot inductance and nl = n3 is given by (6.16).

Comparable expressions are easily obtained for the "vertical”
slot (figure 4(b)) when it is exposed to x directed dipoles.In
the case, of an air filled slot eibosed to an electric dipole,
the result is

t _ .
SEgy (+) = 20log[|nl”|/4wL) + 8.686 u d/L_ , (7.14)

where (+) indicates that the dipole is oriented perpendicular to
the slot and nl“is given by (6.15).

7.3 Shielding Effectiveness of Enclosures

In this section, we will obtain theoretical expressions
for the shielding effectiveness of continuous and discontinuous
enclosures (figures 12 and 13) using the results of sections 6.4
and 6.5. For both of these cases, it will be seen that

SE_ (E) # SE(H) . (7.15)
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Consequently, neither SE:(E) noxr SE:(H) is reducible to Schelkun-
off's equation (2.16).

7.3.1 Single Walled Continuous Parallelepiped

Starting with (6.37) and following the same pro-
cedure as before, we obtain

SEC(E) = 20log |n1(n2 * n3)| + 8.686(n u2 o2 £)d ,
® | 4n2n3
and (7.16)
[
SES(H) = 20log lj_z_t_nil + 8.686(r u2 02 £)d ,
S an2

for the shielding effectiveness of a rectangular parallelepiped
where n3 is given by (6.36). The preceding implies

SEL(E) - SE.(H) = 20log[|n1/n3|] . (7.17)

That is, the difference between the shielding effectiveness of
an enclosure against electric fields and its shielding effec-
tiveness against magnetic fields from the same source depends on
the ratio of the source impedance at z = 0 to the enclosure im-
pedance at z = -d. When |nl|>|n3]. SE:(E) > SEE(H). And con-
versely, |n1|<|n3| implies SE(E) <SEC(H). If |nl|=|n3], then
SE:(E) = SEE(H), and (7.16) reduces to (7.9) since |nl|>>]n2].
That is, when the impedance of the source equals the impedance
of the enclosure, the shielding effectiveness of the enclosure
is equivalent to the shielding effectiveness of an infinite

plane sheet.
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7.3.2 Single Walled Parallelepiped with a Slot in

AR T
IR h

One Side : !'“'

The shielding effectiveness of a parallelepiped tiﬁ;

with a narrow slot in one face is formally identical to (7.16), rﬁﬁb

but, as in the case of the slotted sheet, the orientation of the ﬁ?ﬁ

. 3 .\l ...
| source with respect to the slot must be specified. For an ]

enclosure with a horizontal air filled slot as shown in figure
13 exposed to an x directed magnetic dipole, the shielding

effectiveness with respect to electric and magnetic fields is

I € [\n1(n2 + n3) —
K SEMD (E=) = 20log I I + 8.686],1c><i/Ls ’ P
4n2n3 ;”
(7.18) g}i{
X ( n2 + n3 e
l SE;D(H=) = 20log '—~—————| + 8.686uod/Ls ’
- i 4n2

where nl is given by (6.16) and (6.19)

I L g | 3P (kD 1) (7.19)
n =
o .

: kD+ 1 - k2D2 v

Ko o —
s n2 = ijs ’ (6.25) AN
AN
| and
: Ko
) n3 = Zpptanh(y3 L) . (6.36) &gé?
g As in the case of (7.16), we have ’ﬁﬁ;
.
; SEMD(E=) - SEMD(H=) = 20log[|n1/n3|1 , (7.20) - OSE
: | RO
f so that SE;D(E=) is greater than, less than,or equal to SE&D(H=) :&gﬁ
i depending on whether |nl| is greater than, less than, or equal @;’
o to |n3|. wWhen |nl| = |n3|, (7.18) reduces to (7.13). That is, Ry
. when the magnitude of the source impedance equals the magnitude . .
1
A
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of the enclosure impedance, the shielding effectiveness of the

enclosure is equivalent to the shielding effectiveness of an
infinite sheet with an air filled slot.

PRt
It is of interest to compare the shielding effectiveness f?ij',
AT
measurements of Axford et al ® with SE;D(H) based on D
)

(7.18). This is done in figure 15 where (a) shows a schematic
representation of the experimental set-up and (b) is a plot of
the measured and computed shielding effectiveness - :rsus source
frequency. As the figure indicates, the measurements were
carried out using 12 in. diameter loops in the arrangement pres-
cribed by MIL-STD-285 and IEEE 299 on a 9'x9'x9' shielded enclo-
sure with a rectangular slot .5 m. long and 1/16 in. wide on one
face. The walls of the enclosure consisted of steel and alumi-
num panels 1/4 in. thick, and the surface of the wall opposite
the slot was prepared with an electromagnetic absorbing material
to reduce internal reflections. With this arrangement, the
measured shielding effectiveness of the slotted enclosure
against magnetic fields from a loop antenna was obtained using
the experimental definition (7.4).

In applying (7.18) to this enclosure, it was assumed that
the absorbing material effectively eliminates internal reflec-
tions so that the enclosure impedance (6.36) reduces to

n3 = ZTE for f < fc = 49 MHz . (7.21)

That is, the enclosure is equivalent to an infinitely 1long

waveguide and the input impedance is equal to the characteristic
impedance of the wavequide (6.30). The slot inductance Ls used

9 R. Axford, R. McCormack, and R. Mittra, Evaluation of the

Applicability of Standard CW EMI/RFI Shielding Effectiveness rfgi%L
Test Techniques to Assessment of EMP Hardness of Tactical E%g?E:
Shelters, Construction Engineering Research Laboratories, NN
CERL-TM-M-307, (March 1982). \\L\

e

103 ;.




(a) Experimental Set-up (Estimated)

y y
l » 18°
| Loop 18502 "
1/16" Slot
- — ——>x zeE>—O
! I o \TJ , ﬁAbsorber )
| ‘ ] o : 4.5" .
le— .5m-—»! . 3 K174"
| | |
f 9"~ » |« o’ »
Front View ' Side View

(Cross Section)

(b) COmpérlson of Measured and Computed Shielding Effectiveness

MIL-STD-285 Measwéments'} °
| Axford et al Reference 9
™) = Theoretical Shlelding Effectiveness } ° |
E 50 [— | Equation (7.18) fc-49MHz
o - P/
£ 4o0f- SE (H) o
s - £ T | 2%
3 S S °© °® o © o :-:::
E _
W 20~ * ° ‘) ° o | 5
(] - ' ‘i.:_:.:.:.
2 1o} SEyp (1) b e -
& - - ' b
[ 1 | 1 ] | ] Tl ] Rty
100KHz 1MHz 10MHz i 100MHz o7 Lrel
Frequency fo : j‘.ij‘.;
AR
Figure 15. Measured and theoretical shielding effectiveness :;;:j
of an enclosure with a narrow rectangular slot in one wall. o]
(fc = cutoff frequency). oo
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in these calculations is 3.2x10 'H (equation 6.28).

Figure 15(b) shows that the difference between the measured
and theoretical shielding effectiveness ranges from 6 to 8 dB
for this enclosure over more than two decades of frequency. 1In
view of the inherent discrepancy between the discrepancy and ex-
perimental definitions os shielding effectiveness noted in
section 7.1 as well as other uncertainties such as the actual
effectiveness of the absorbing material used in the measurements,
this must be considered good agreement.

7.4 A Modified Theoretical Definition of Shielding

Effectivenss for Enclosures

In section 7.2, it was shown that the theoretical
shielding effectiveness of a plane sheet (continuous or discon-
tinuous) is characterized by a single function which is identi-
cal in form to Schelkunoff's shielding formula. That is,

t _ eptim = et
SE_ = SEL(E) = SE_(H) ,

(7.22)
= 20log(|ns/4 nc|) + A,

where ns is the wave impedance of the source at P(0,0,0), nc is
the characteristic impedance of the sheet (Equation (6.2) or
(6.25)) and A 1is a loss term that may depend on the frequency
but is otherwise independent of the source. This result estab-
lishes the validity of the extended transmission theory of
shielding described in section 2 for shields consisting of a
single planar sheet. To obtain the effectiveness of a plane
shield with respect to any source field, it is only necessary to
specify the wave impedance of the source field in (7.22). In the
case of an electric dipole, we have

t _ ot ot
SEg, = SEp (E) = SE(

ED ED H)

(7.23)
= 20log(|nED/4 nc]) + A ,
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where nED is the wave impedance of the electric dipole at
P(0,0,0) (equation (6.15)). And for the magnetic dipole,

t
SEMD

t
MD

t =
SEyp (E) = SEy (H)

(7.24)
20log(|nMD/4 ncl|) + A ,

where nMD is the wave impedance of the magnetic dipole
(Equation (6.16)).

The simplicity of (7.22) is a direct result of the fact that
ns is approximately equal to n3, the impedance of the field at
P°(0,0,-d) looking into M3. That is,

ns £ n3 . (7.25)

This, in turn, is due to the fact that the fields on both sides
of the sheet satisfy the same radiation condition and approach
the same wave impedance as z —>t®,

In contrast to the preceding, it was seen in section 7.3
that the shielding effectiveness of an enclosure is not charac-
terized by either SEE(E) or SE:(H) alone. That is,

t t t
SEs # SES(E) # SES(H) , (7.26)
but instead,

SES(E) = SEL(H) + 20log(|ns/ n3|) , (7.27)

where ns is again the wave impedance of the source field at
P(0,0,0) and n3 is the impedance atP “(0,0,-d) looking into the
enclosure (M3). Since the structure of the fields in the enclo-
sure is unrelated to that of the fields outside the enclosure,

ne , (7.28)

ns # n3
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in this case. This means that the shielding characteristics of
an enclosure depend on both SE:(E) and SEE(H). It follows that
the shielding effectiveness of an enclosure should be defined in
terms ¥ both of these quantities. The logical choice for this
definition is

t _ t t
SES = (SES(E) + SES(H))/Z . (7.29)

Since (7.29) reduces to (7.22) when SE.(E) = SE.(H),this defini-
tion includes the plane sheet as a special case. Moreover, the
reader can easily verify that the right side of (7.29) is deter-
mined by the ratio of the power density of the source field in-
cident at P(0,0,0) to the power density of the transmitted field
at P°(0,0,-d). That is,

SE. = 10logl|eD1%(0,0,0)/PD3(0,0,-d) |1 , (7.30)

where

pp1%(0,0,0) = EIS(0,0,0) H1;(0,0,0) ,

PD3(0,0,-4)

E3p(0,0,—d) H3q(0,0,-d)

7.5 A Modified Experimental Definition of Shielding
Effectiveness and Its Implications For MIL-STD-285
and IEEE 299

Since SEE(E) # SE:(H), it follows from (7.5) that
SE:(E) # SE:(H) for enclosures. That is, the experimental
shielding effectiveness of an enclosure against electric fields
(7.3) is not equal to the experimental shielding effectiveness
of the same enclosure against magnetic fields from the same
ource (7.4). Thus, the experimental shielding effectiveness of
an enclosure depends on both SEz(E) and SEz(H) just as SEE
depends on both SEE(E) and SE:(H) as we have seen. To reflect
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this fact, the experimental definition of shielding effective-
ness should include both SE(:(E) and SE‘:(H) . The logical choice
here (analogous to (7.29) is

sE® = (seS(E) + sES(mH))/2 . (7.31)
s s s
The reader can verify that SE: is the ratio of the power densi-
ty at P(0,0,-D-d) with the enclosure removed to the power densi-
ty at the same point with the enclosure in place.

The c¢lear implication of the preceding is that the shielding
properties of an enclosure cannot be completely determined by
measuring either SEz(E) or SE:(H) alone; yet this is precisely
what virtually all shielding standards attempt to do. For exam-
ple, as previously noted, both MIL-STD-285 and IEEE 299 specify
shielding measurements with a source and a field sensor consist-
ing of small loop antennas. These produce a measured value of
SEz(H) for a loop source. But neither MIL-STD-285 or IEEE 299
provide any procedures that lead to a measured value of SEz(E)
for the loop source. Thus, there is no way that measurements
made in accordance with these standards can be related to the
power density ratio for shielded and unshielded fields from the

loop source.

7.6 A Generalized Schelkunoff Formula and a New Formulation

of the Extended Transmission Theory of Shielding

The fact that SE:(E) # SEE(H) for enclosures also has
implications for the extended transmission theory of shielding.
It means that, unlike the situation described in section 7.4 for
plane sheets, neither SE:(E) nor SE:(H) can be reduced to Schel-
kunoff's equation (2.16) when the shield is in the form of an
enclosure. And, since Schelkunoff's eguation is the basis for
the extended transmission theory of shielding, it follows that
this theory as described in section 2 cannot be valid for enclo-
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sures. However, with the aid of a generalized form of Schelkun-
off's equation, we can reformulate the extended transmission
theory in a way that includes both enclosures and plane sheets.

To obtain the generalized Schelkunoff equation, we substi-
tute (7.16) and (7.18) into (7.29). The result (with a change
in notation) is

t

ne + ne
SE_ = 10log(|ns/ne|) + 20log || ——

+ A, (7.32)

4 nc

where ns is the wave impedance of the source, ne is the imped-
ance looking into the enclosure, nc is the characteristic imped-
ance of the enclosure wall and A is the absorption term. With (7.32) ,
we can compute the shielding effectiveness of any enclosure for
which ne, nc, and A can be determined against the fields of any
source for which ns is known. Thus, according to the reformu-
lated theory, the shielding problem reduces to the problem of
calculating these quantities.

In applying this theory, two things must be kept in mind:
First, ne, nc, and A can all depend on the polarization of the
incident field or, in other words, the orientation of the source
with respect to the enclosure and to any discontinuities that
may be iluuminated. Consequently, in citing the shielding
effectiveness of any enclosure, the spatial relationship between
the source and the enclosure must be specified. Second,theoret-
ical results based on (7.32) should only be compared to mea-
surements based on the modified experimental definition of shield-
ing effectiveness (7.31). That is, a valid test of (7.32) re-
quires measurements of both SE:(E) and SEZ(H).

7.7 A Correction Factor Relating the Shielding Effective-

ness of an Enclosure as Seen by Two Sources

With (7.32), we can obtain a simple analytical rela-
tionship between the shielding effectiveness of an enclosure as
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seen by one source and the shielding effectiveness of the same
enclosure as seen by a second source. If nSl is the wave imped-
ance of the first source, then we have

nc + ne

SEg; = 10log(|ns1/ ne[) + 20log

4 nc

And, if nS2 is the wave impedance of a second source with the

same orientation (polarization) as S1, then

nc + ne

sgt

sy = 10log(|nS2/ ne|) + 20log

4 n¢

is the shielding effectiveness of the enclosure as seen by S2.

Now taking the difference between SEt and SEEZ, we obtain

s1

- ot t

A(S1:S2) = SEg; - SEg,
= 10log(|nsi/ ns2|) . (7.33)

That is, the difference between the shielding effectiveness of

an enclosure as seen by two sources with the same orientation

depends only on the ratio of the wave impedance of the two

sources.

With the correction factor, A(S1:82), measured values of
shielding effectiveness taken with one source can be analytical-
ly adjusted to give an estimate of the shielding effectiveness
that would have been measured with another source. This can be

very useful in cases where shielding measurements with one
source are difficult or impossible as they are with a
plane wave EMP sources where nSl = 1207 ohms. In this case, the

estimated shielding effectiveness of an enclosure against a

plane wave EMP field is
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earth's surface where 6 and ¢ , like p, are coordinates referred
to a burst, centered sherrical system and the superscript c¢
denotes the fact that the direct Compton current is the source
of these fields. Additional and even larger fields Eg and Bg
are generated by current loops formed when Compton currents in
the air are returned through the ground to re-establish charge
neutrality in the source region. The net vertical electric field
Ee and azimuthal magnetic field B¢
to the sum of these fields: Ey = Eg + Eg, B¢ = Bg + Bg .

EO and B¢ are the largest fields generated in the source

near ground level are equal

region. Peak fields occur close to the burst point above ground
level, and both fields decrease rapidly with increasing distance
from the burst point. The time history of Ep is characterized
by a rapid rise to a maximum at t = 50 ns followed by a 50 ns
decay to a plateau that is maintained for 10-20 us before the

final decay. As shown in figure 18(b)*, B, has a narrow early
r

¢
time of the early peak is approximately the same as that of Ep.

peak (Bg) followed by a much broader late peak (B,). The rise
The late peak occurs at approximately 7 us and is followed by a
gradual decay out to 70 us. An analytical approximation to the

waveform in figure 18(b) can be written as follows

B,(t) = Bg(t) + By(t) , (8.23)
where
Bg = Al[exp(-alt) - exp(—azt)] '
(8.24)
B; = Az[exp(-a3t) - exp(-a4t)] ’
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